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Much of the soybean produced in Brazil is exported and, consequently, the do-

mestic soybean price (R$) is greatly influenced by the price traded at the Chicago

Mercantile Exchange Group (CME Group) (US$). Therefore, to model the depen-

dency structure between soybean yield and price, the exchange rate must be

incorporated into the modeling. This study aims to model the dependency struc-

ture between these three variables using the Copula methodology, calculate the

crop revenue insurance rates, and compare with the rates offered in the insur-

ance market. The rates applied by the Brazilian insurance market are overpriced

when compared to the methodology presented in this study with the incorpora-

tion of the dollar rate in the modeling, which could increase the problem of ad-

verse selection exchange and hamper massification of agricultural insurance in

the Brazilian territory.

Keywords. Three-dimensional parametric copulas, Agricultural risk management,

Revenue insurance.

JEL classification. Q1, C10.

1. Introduction

In the work of Duarte et al. (2017), we analyzed the dependency structure between yield

and monthly nominal average prices (in Reais1) received by soybean producers in the

state of Paraná. This spot price is collected from regional centers and weighted by the

relationship between production in the region and state, and then the simple arithmetic

average is used to calculate the monthly average price.

The purpose of a business in the spot (or physical) market is to make an immediate

purchase and/or sale. Thus, the delivery and payment of the product occur concomi-

tantly. This type of market is typically sporadic and has a high degree of uncertainty

regarding price behavior, supply regularity, and product quality. Therefore, a company

that adopts this mechanism assumes a great risk, which may lead to failure in its oper-

ations due to uncertainties related to product demand and supply.
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One way to reduce those risks is using future markets, known as hedging, which is

a price-locking operation in a future date. In most contracts, financial settlement occurs

prior to the delivery date and does not require physical delivery to the agreed location.

For example, soybean produced in Brazil is usually traded at CBOT/CME; however, the

physical delivery of the commodity is in China or the European Union.

Cooperatives, or trading companies, that trade Brazilian soybean use the futures

market to price the commodity for future delivery. Thus, since much of the soybean

produced in Paraná is exported, the US dollar volatility has a great influence on prices

received by farmers and thus impacts directly in their income.

Therefore, in the income insurance context it is important to study not only the

effect of the dependency structure between agricultural yields and price but also when

the exchange rate variable is incorporated in the analysis.

In Brazil, two insurance companies offer revenue insurance to farmers, from now on

called insurer A and insurer B. Insurer A uses the annual productivity series in its pricing

for each municipality and the daily physical price series (CEPEA/ESALQ indicator). This

indicator represents the average trading value of Brazilian export-grade bulk soybeans,

referenced at the Paranaguá Port, Paraná, Brazil.

On the other hand, insurer B uses CME future price series transformed into Reais.

In this case, the correlation between future price (CME price) and the dollar rate (EXG

rate) is not taken into account and may lead to a reduction in the impact of price (CME).

In order to understand the variation and dependency of the exchange rate (EXG

rate) on revenue modeling, this variable was incorporated into the model. Therefore,

this paper presents an alternative approach with the incorporation of the EXG rate into

the Copula model (three-dimensional approach). The study of the relationship of these

three variables was not found in the literature, in the context of agricultural risk and

the comprehension of the relationship between these three variables is the main con-

tribution of the study. Recent articles in the agricultural risk context only consider the

modeling of two variables, price and yield (Duarte and Ozaki, 2019).

This study modeled the dependency structure between soybean yield, CME price,

and EXG rate through Copula functions.

In order to compare the inclusion and the impact of the third variable the analysis

was performed under the two-dimensional and the three-dimensional approaches. In

addition, in both approaches, we calculated according to Duarte et al. (2017) and es-

timated insurance premium revenue rates and their comparison with the rates applied

by the Brazilian insurance market.

In the next section, we present the way of calculating the revenue insurance pre-

mium, under the three-dimensional approach methodology to calculate premium rate.

Section 3 presents the description of the data used in the study. Section 4 presents the

Copula methodology for calculating the three-dimensional distribution and the models

used for modeling marginal distributions. Section 5 presents the study results. Section 6

discusses the results from both approaches. Finally, the conclusions are presented in

Section 7.
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2. Revenue Insurance Premium Rate

In this study, we consider revenue F as a function of three variables, soybean yield (X),

USD price (Y ), and EXG rate (Z) in the expression F = XY Z. Guaranteed yield is defined

by Xg = λXe, where 0 < λ < 1 is the coverage level (CL) chosen by the producer and

Xe is the expected yield, usually calculated by the average of the last five harvests.

Guaranteed price is defined by Yg = λYe, where 0 < λ < 1 is the CL and Ye is the expected

price, usually calculated by the average of the last 15 days of the futures price traded

at CME on the day of contracting the insurance.

Similarly, we define the guaranteed EXG rate (Zg = λZe).

In this type of insurance, we assume that the compensation paid per unit of area to

the rural producer is given by: I = max{(xgygzg − xyz;0}.

Loss probability is given by p = Pr(X < x;Y < y;Z < z | xyz < xgygzg). This conditional

probability expresses the cumulative joint probability of an event (loss) as a function

of the random variables X , Y and Z, since the choice of XY Z values is restricted to

the condition. Thus, the premium rate is given by the expected loss, according to the

equation:

E(Loss) = E(max{(xgygzg − xyz);0})

= Pr(X < x;Y < y;Z < z | xyz < xgygzg)[xgygzg −E(XY Z | xyz < xgygzg)].

Therefore, the optimum prize rate is given by

π =
Pr(X < x;Y < y;Z < z | xyz < xgygzg)[xgygzg −E(XY Z | xyz < xgygzg)]

xgygzg
.

Note that the expected revenue is related to risks in marginal distributions of price,

yield, and USD. The marginal distribution of yield and price is inferred from historical

yield and price data using empirical and parametric methods. In turn, the construction

of the joint distribution uses a parametric copula function. The theoretical concepts re-

lated to determining the premium rate of the two-dimensional revenue insurance were

described by Miqueleto (2011) and Brisolara (2013).

3. Data Description

For yield modeling, we analyzed the annual grain yield series (kg/ha) of the municipal-

ities of Cascavel and Toledo in the state of Paraná, Brazil, from 1980 to 2016, totaling

36 observations, and available by Ipardes (2017). For price modeling, we used the daily

price series of soybean futures contract traded at Chicago Board of Trade (CBOT) of CME

Group due in March 2017 (code ZSH17). These data are available in Barchart (2017).

Futures contract prices, YCME , are available in cents/bushels; therefore, the transfor-

mation factor

FT = (

YCME

100
27,216

×60)
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was used to convert them into USD for 60-kg bags. The observation period was from
Apr 05, 2015 to March 14, 2017, totaling 455 observations.

The daily rate of trade quote for the same period was taken from the Macroeconomic
and Regional Database of the Institute of Applied Economic Research Ipea (2017), on
Feb 05, 2017.

To obtain the same periodicity of price and EXG rate series, we simulated the soy-
bean yield reaching 455 observations; thus, allowing the use of the Copula methodology
for the three variables with the same periodicity (455 observations each). In addition,
a second analysis was performed simulating 20,000 observations of the three series
from the adjusted Copula. Finally, the commercial rates charged by insurance coverage
applied by insurer A are available from MAPA (2017).

4. Methodology

The methodological steps of this work consist of:

• Step 1) Yield modeling.
Agricultural yield over the years has shown an upward trend, due to the great ad-
vance in technologies used in crops, such as planting techniques, the use of in-
puts, machinery, among others. Therefore, the deterministic procedure suggested
by Gallagher (1987) and Tejeda and Goodwin (2008) is used for the yield detrend.

• Step 2) CME Price and exchange modeling.
Soybean prices are less predictable than yield, due to the large international soy-
bean market. Price and EXG rate series have a much more complex dynamic as a
number of external factors. Domestic supply and demand issues also affect both
variables.

Two characteristics of these series are the trend and non-constant variance over
time. Therefore, it was decided to work with the differentiated series, transforming
it into a series of prices adjusted at the end of the trading day, removing the trend of
these series. In addition, to extract what is important for price risk, modeling price
volatility of marginal univariate series is incorporated into the final Copula model.

• Step 3) Copula modeling.
To study the dependence structure of the variables in question, Copula functions
are used to construct the multivariate function. In this work, two approaches were
used: two-dimensional and three-dimensional.

In the two-dimensional approach, the CME price and EXG rate daily price series
were multiplied and transformed into a single price series in Reais.

In this case, a null correlation was considered between these variables. This ap-
proach is similar to that used by insurer B when pricing agricultural revenue insur-
ance.

In turn, the three-dimensional approach takes into account the correlation be-
tween the CME and EXG rate price variables. To understand the risk of Brazilian
soybean price, influenced by exports and, consequently, international prices, it was
decided to incorporate the exogenous exchange rate variable into the revenue in-
surance pricing model.
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4.1 Yield Modeling

As previously described, soybean yield has increased over the years, mainly due to the

technology employed in the field.

Therefore, in order to model the yield risk we detrend the series, through the deter-

ministic procedure suggested by Gallagher (1987) and Tejeda and Goodwin (2008). For

soybean yield modeling in Cascavel and Toledo, the Normal, Skew Normal, Odd Log Lo-

gistic Normal, and Skew T distributions were used, as presented in Duarte et al. (2017).

The well-known Normal models were used as a first approach to modelling yields.

The description of the methodology of the Normal and Skew Normal distribution follows

Botts and Boles (1958),Just and Weninger (1999),Azzalini (1985),Ozaki and Silva (2009).

In this context, we proceed detailing the OLLN and Skew T distribuitions.

Now we presented the Skew-t Student distribution, propose by Azzalini and Cap-

itanio (2003). The X variable is called “Skew-t Student”, with location parameters

(µ ∈ R), scale parameter (σ ∈ R∗
+), asymmetry parameter (ν ∈ R) and kurtosis parame-

ter (τ ∈ R∗
+), then the probability density is defined by:

f (x; µ,σ ,λ ) =
2
σ

t
(

x−µ

σ

)
T
[

ν
√

λ

(
x−µ

σ

)]
,

where z = x−µ

σ
, ω = νλ 1/2z, λ = τ+1

τ+z2 , tZ1 e TZ1 are respectively, the standard t-Student

(pdf) with τ degrees of freedom and the standard t-Student (pdf) with τ + 1 degrees of

freedom. As a notation, we adopt Z ∼ ST (µ,σ ,ν ,τ). Note thet when ν = 0, the distribution

is equivalent to t-Student symmetric.

Figure 1 illustrates the behavior of the ST’s pdf. Note in the graphs 1a and 1b the

contribution of the parameter ν in the form of the distribution, with µ , σ and τ fixed.

Positive values of ν indicate positive asymmetry and negative values of ν indicate nega-

tive asymmetry. Figure 1c shows the effect of the kurtosis parameter on the distribution

when the other parameters are fixed.

Another distribution used in this work is the Odd log-logistic-Normal(OLLN) distribu-

tion. The new OLLN distribution family allows a greater flexibility of the distribution’s

tails. The cumulative probability function (cdf) with a shape parameter α > 0, is defined

by:

F(x; µ,σ ,α) =
∫ Φ(x;µ,σ)

Φ(x;µ,σ)

0

α tα−1

(1+ tα)2 dt =
Φ

α

(
x−µ

σ

)
Φ

α

(
x−µ

σ

)
+

[
1−Φ

(
x−µ

σ

)]α , (1)

where Φ(x; µ,σ) = 1−Φ(x; µ,σ). The OLLN density is given by

f (x; µ,σ ,α) =

αφ

(
x−µ

σ

)
Φ

(
x−µ

σ

)[
1−Φ

(
x−µ

σ

)]α−1

σ

{
Φ

α

(
x−µ

σ

)
+

[
1−Φ

(
x−µ

σ

)]α}2 , (2)
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(a) Varying ν < 0

(b) Varying ν > 0

(c) Varying τ > 0

Figure 1. Plots of the Skew-t density function for different parameter values.
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respectively. Note that α > 0 is a shape parameter. Henceforth, a random variable with
density function (2) as above is denoted by X ∼ OLLN(α,µ,σ). For µ = 0 and σ = 1, we
obtain the standard OLLN distribution. Further, the OLLN distribution with α = 1 reduces
to the Normal distribution.

Figure 2 shows the density of the OLLN distribution for some values of the parame-
ters µ,σ and α . It should be noted in the plots 2a and 2b the contribution of the param-
eter α on the unimodality and bimodality of the distribution, when µ and σ are fixed.
When the parameter α approaches zero, the pdf presents bimodality. On the other hand,
when the value of α increases the function presents unimodality. It is observed that
when µ varies, the plots is translated in the x-axis, regardless of the form Figure 2c.

4.2 Price and EXG rate Modeling

One of the goals in finance is the risk assessment of a portfolio of financial assets. In
this study, the objective was to assess the risks of trading soybean commodity at the
CME exchange. Risk is often measured in terms of asset price changes.

Suppose Yt is the commodity price at time t, usually a trading day at CME or the
EXG rate quote (Zt ). The price change between t and t − 1 is given by the difference
∆Yt = Yt −Yt−1 = dt , adding it to daily price adjustments.

In finance, relative price variation is widely used, called simple net return (Rt =
∆Pt
Pt−1

)

or log return rt = log Pt
Pt−1

. According to Morettin (2008), it is preferable to work with re-
turns, as they are free of scales and have statistical properties that are more interesting
(such as stationarity and ergodicity).

The ARMA, ARCH, and GARCH family models are used to model returns. Returns
usually have interesting features: returns are self-correlating, return squares are self-
correlating, have volatility groupings over time, and the returns distribution have heav-
ier tails than the normal distribution. In addition, distribution is generally leptocurtic,
although approximately symmetrical. These facts are known as stylized facts concern-
ing returns (Morettin, 2008).

Therefore, deterministic volatility could be calculated by the ARCH family models,
which were introduced by Engle (1982), with the purpose of estimating the inflation
variance. The idea is that returns are serially uncorrelated; however, the conditional
variance (volatility) depends on returns applied to a quadratic function (Morettin, 2008).

An ARCH model of order m, denoted by ARCH (m) is defined by:

rt =
√

htεt

ht = α0 +α1r2
t−1 + · · ·+αmr2

t−m

where εt are independent and identically distributed (iid) with zero mean, α0 > 0, αm > 0
and αi ≥ 0, i = 1, . . . ,m−1.

A drawback of this model is that positive and negative returns are treated similarly
because the square of returns is present in the volatility formula. Generally, volatility
reacts differently to positive and negative returns. In addition, because the returns are
for the square, some large isolated values may lead to overestimated forecasts. Thus,
ARCH models tend to overestimate future volatility, incorporating past extreme event
outcomes (Morettin, 2008).
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(a) Varying α > 0

(b) Varying α < 0

(c) Varying µ > 0 and 0.2 < α < 0.5

Figure 2. Plots of the OLLN density function for different values of the parameters.

4.2.1 GARCH Models A generalization of the ARCH models was proposed by Bollerslev

(1986), called the Generalized ARCH (GARCH) model. These models may be thriftier
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than the ARCH models. An GARCH (m,n) model is defined by:

rt =
√

htεt

ht = α0 +
m

∑
i=1

αir2
t−i +

n

∑
j=1

β jht− j

where: εt are iid with zero mean, α0 > 0 ,αm > 0 , αi ≥ 0 , i = 1, . . . ,m− 1, β j ≥ 0, j =
1, . . . ,n−1, βn > 0, ∑

q
i=1(αi +βi)< 1,q = max(m,n).

It is generally assumed that εt errors are usually distributed or follow a t-Student
distribution or a generalized error distribution (ged), described in Nelson (1991). Ac-
cording to Morettin (2008), it is recommended in practice to define low order models,
for example, GARCH (1,1), (1,2) or (2,1).

4.3 Copulas

According to Joe (2014), the copula is a multivariate distribution in which all marginal
one-dimensional distributions are uniform U (0,1). Consequently, if C is a Copula, then
the distribution of a vector of dependent random variables is U (0,1). The result below
is an extension of Sklar theorem, described in Sklar (1959).

Theorem 1. For a d-dimensional distribution F ∈ F(F1,F2, . . . ,Fd), where Fj is the jth
marginal univariate distribution, the Copula associated with F is a distribution function
C : [0,1]d → [0,1],

F(y) =C(F1(y1),F2(y2), . . . ,Fd(yd)), y ∈ Rd , (3)

with marginals U(0,1) that satisfy:

(a) If F is a continuous d-dimensional distribution with uniform margins F1, . . . ,Fd and
quantile functions F−1

1 , . . . ,F−1
d , then:

C(u) = F(F−1
1 (u1), . . . ,F−1

d (ud)), u ∈ [0,1]d

is unique.

(b) If F is a d-dimensional distribution of discrete random variables, then the Copula
is unique only in the set Dom(F1)×·· ·×Dom(Fd)

The proof of this theorem can be found on page 8 of Joe (2014).
Copula C is parameterized by a δ parameter vector, called the multivariate depen-

dency parameter.
Copula families are generally given as a function of accumulated distribution (for

likelihood inference) and Copula density is obtained by differentiation. If C(u) is an ab-
solutely continuous cumulative distribution then its density function is given by:

c(u) = c(u1, . . . ,ud) =
∂

dC(u)
∂u1 · · ·∂ud

, u ∈ [0,1]d . (4)

There are different multidimensional Copulas, including the Gaussian, t-Student and
Archimedean families (Cherubini et al., 2004).
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4.3.1 Inference of Multivariate Copulas via Pseudo-Likelihood In the study of Cop-

ula dependence, there are several possibilities for choosing the marginal distribution

and the Copula family. For continuous variables, the estimated copula parameter can

be compared using the pseudo maximum-likelihood approximation, also known as the

canonical maximum likelihood, proposed by Genest et al. (1995).

This is a semi-parametric method using the empirical distributions F̂1, . . . ,F̂d and

maximizing:

Lpseudo(δ ) =
n

∑
i=1

logc(F̂1(yi1), . . . ,F̂d(yid);δ ),

where δ is the Copula parameter and F̂j(y) = n−1{∑
n
i=1 I(yi j ≤ y)−0.5}.

According to Joe (2014), the pseudo-maximum likelihood with empirical distribution

for marginal functions can only be implemented if the variables are continuous and

there are no covariates or censored observations.

If the Copula model is specified correctly, then Genest et al. (1995) shows that δpseudo

is consistent and asymptotically normal.

In addition, Chen and Fan (2006) proved other asymptotic properties when using

semi-parametric inference in the time series context and developing estimation meth-

ods for one-dimensional copula and marginal functions. Copula selection, when applica-

ble to the pseudo-likelihood approach is commonly performed by comparing AIC Akaike

(1974) or BIC Schwarz et al. (1978), based on pseudo-likelihood logs.

In this work, we chose this method for the estimation of Copula parameters.

4.4 Graphical Tool to Detect Dependency - Chi-plot

In addition to the scatter plot, the Chi-plot is another graphical tool used in the literature

to detect dependency between two variables, proposed by Fisher and Switzer (2001).

The description of this section is based on the works of Genest and Favre (2007)

and Tursunalieva and Silvapulle (2007). The Chi-plot graph is based on the data ranks.

The Chi-plot is a scatter plot between pairs (λi,χi) which are transformations of n pairs

(Xi,Yi), i = 1, . . . ,n.

Let H be a continuous bivariate distribution function and Fn and Gn the marginal

distributions of X and Y , respectively, which can be estimated for each pair (Xi,Yi) as

follows:

Hi =
1

n−1 ∑
j ̸=i

I(X j ≤ xi,Yj ≤ yi) (5)

Fi =
1

n−1 ∑
j ̸=i

I(X j ≤ xi) (6)

Gi =
1

n−1 ∑
j ̸=i

I(Yj ≤ yi), (7)

where I(E) denotes the indicator function of the event E.
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Fisher and Switzer (2001) proposes to plot the graph of (λi,χi) pairs, defined by:

χi =
HiFiGi√

Fi(1−Fi)Gi(1−Gi)
(8)

λi = 4Si max{(Fi −0.5)2,(Gi −0.5)2} (9)

where Si = sign{(Fi −0.5)2,(Gi −0.5)2}.

The Chi-plot graph has confidence bands (dashed lines on the graph) drawn in ± cp√
n

(approximate value for cp and with a significance level of 95% is 1.78).

The pairs (λi,χi) of independent and continuous marginal factors tend to be located

within the bands. For negatively correlated marginal functions, the pairs of (λi,χi) tend

to spread below the lower range. On the other hand, if the marginal functions are posi-

tively correlated, the pairs of (λi,χi) tend to spread above the upper range. Finally, pairs

close to zero χi = 0 and between ranges indicate independence between variables.

4.5 Multivariate Independence Test

For the construction of Copulas, the studied variables Y1,Y2, . . . ,Yn must be a random sam-

ple from the joint distribution function H(Y1,Y2, . . . ,Yn). According to Miqueleto (2011), to

ensure that the sample is random, the variables must be mutually independent. In other

words, if the null hypothesis from which the variables are independent is rejected, this

provides evidence that Y1,Y2, . . . ,Yn were not randomly generated. The description of this

section is based on the works of Kojadinovic and Yan (2011) and Genest and Rémillard

(2004).

It is known that the dependency structure between the variables is completely sum-

marized by the C Copula and the mutual independence between them occurs if, and

only if, C(u1,u2, . . . ,un) = Πn
i=1ui, a test of the mutual independence of the components of

Yi, i = 1, . . . ,n, can be statistic In, as proposed by Genest and Rémillard (2004):

In =
∫
[0,1]d

n(Cn(u)−Π
n
i=1ui)

2 du.

Under the hypothesis of independence, Y1,Y2, . . . ,Yn the empirical process
√

n(Cn −
Πn

i=1ui) can be decomposed using the Mobius transform into a collection of 2d − d − 1
sub-processes

√
nMA(Cn) where A ⊆ {1, . . . ,d}, |A| > 1 converges together to a mutually

independent Gaussian process.

Genest and Rémillard (2004) proposes that Y1,Y2, . . . ,Yn mutually independent is

equivalent to having MA(C(u)) = 0,∀u ∈ [0,1]d , A ⊆ {1, . . . ,d} for |A|> 1.

Rather than simple In statistics, the authors suggest considering 2d −d−1 test statis-

tics as:

MA,n =
∫
[0,1]d

n(MA(Cn(u))d du,

that are asymptotically independent under the hypothesis of independence.
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To view test results, when based on all 2d − d − 1 statistics MA,n, a graphical repre-

sentation called a dependogram can be used. For each subset A ⊆ {1, . . . ,d}, |A| > 1, a

vertical bar will be drawn whose height is proportional to the value of MA,n.

The critical values of MA,n are represent by black balls.

Subassemblies for which the bar exceeds the critical value can be considered to be

dependent variables.

5. Results

In this section, we present the modeling of soybean yield series, CME futures price, and

EXG rate quotes. In addition, copula estimates are presented under the two-dimensional

and the three-dimensional approaches.

5.1 Yield

Table 1 presents the descriptive statistics for the trend-adjusted yield series for Cas-

cavel and Toledo. We observed an average yield of 3405.587 Kg/ha, standard deviation

329.91, and asymmetry measurement -0.329 for the municipality of Cascavel, indicat-

ing a slight left asymmetry (from the normal distribution). In addition, the coefficient of

variation in Toledo (15.82%) indicates a higher yield risk than in Cascavel (9.687%).

Table 1. Descriptive Statistics for the yield series adjusted for Cascavel and Toledo (n = 37

observations)

Series Mean Median Std Dev Asymmetry Kurtosis Max.Value Min.Value CV(%)

Cascavel 3405.6 3447.4 329.9 −0.3 −0.7 4021.8 2707.0 9.7

Toledo 3290.0 3442.9 520.7 −1.3 1.9 4005.1 1505.8 15.8

The annual yield series for the municipalities of Cascavel and Toledo were modeled

using the OLLN distribution as described in Duarte et al. (2017).

Table 2 presents the estimated parameters related to the OLLN distribution for the

yield series, with standard errors in parentheses. Note that the parameters are very sim-

ilar for both municipalities, indicating similar yield characteristics. The result of these

estimates allows simulating the required number of observations and their respective

cumulative probabilities that are useful for matching price and USD probabilities. Thus,

as the series have the same number of observations, the copula estimates can be ob-

tained.

5.2 Bivariate Analysis for Revenue Contract

Consider X the simulated yield for the municipalities for Toledo or Cascavel (kg/ha), Y
the price of CBOT/CME (US$ per 60-kg bag) and Z the USD quote.

For the calculation of revenue, let us consider the price P = Y ∗Z, in this case, we

do not take into account the exchange variability. The revenue F will be considered as a
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Table 2. Estimated parameters of the OLLN(µ,σ ,α) distribution simulation, with standard errors

in parentheses

Municipalities µ σ α

Toledo 3289.6 637.9 1.04

(117.1) (338.4) (0.68)

Cascavel 3415.3 680.9 1.63

(72.6) (797.1) (2.09)

function of two variables F = X ∗P. This procedure does not take into the dependency

structure between price and USD variables. It is equivalent to assume that the correla-

tion between the variables is nonexistent. In this case, we are only assuming that there

is a dependency structure between yield and price in Reais.

Table 3 presents the descriptive statistics for the simulated yield series (20,000 ob-

servations) of the OLLN distribution for Cascavel, Toledo and price in Reais. An average

yield of 3402.604 Kg/ha, standard deviation (Std Dev) 425.01, and asymmetry mea-

surement 0.0015 were observed for Cascavel.

In addition, the statistics are close to each other, suggesting a very similar premium

rate for both municipalities. Moreover, the statistics presented in Table 3 are close to

the original ones presented in Table 1, demonstrating that the simulations were properly

implemented. The average price in Reais is 73,504 per 60-kg bag, with a coefficient of

variation of 6.80 %.

Table 3. Descriptive Statistics for simulated yield series for Cascavel, Toledo and price

Series Mean Median Std Dev Asymmetry Kurtosis Max.Value Min.Value CV(%)

Cascavel 3402.6 3406.7 425.0 0.002 −0.20 4752.3 2085.2 12.5

Toledo 3279.7 3285.4 593.1 0.001 −0.19 5167.5 1437.1 18.1

Price(R$) 73.5 73.8 5.0 −0.127 −0.76 84.9 62.8 6.8

There is a trend in the soybean futures price series between Apr 5, 2015 to March

3, 2017, presented by the Dickey-Fuller test (p-value = 0.4537). Therefore, we opted

for differentiating it, turning it into daily adjustments. Series differentiation does not

preclude review of a revenue insurance contract, because the difference in guaranteed

price pg and the price that occurred will be the adjustment.

The graphs in Figures 3a and 3b show the Histogram and Normal QQ-Plot for the ad-

justment price series in Reais (R$), respectively. Note that the adjusted price series fluc-

tuates around zero, appearing to be stationary, tested by the Dickey-Fuller test (p-value

< 0.01, rejecting the hypothesis of unit root); however, with time-dependent variability

(volatility).

Moreover, by the normal QQ-plot graph, the adjusted series has a tail heavier than

normal. The main concern in the actuarial area is with the left tail of the distribution, as

it is the region where dependency between extreme values is observed and is used to

calculate the loss risk (loss probability). Underestimating loss probability implies lower

premium rates, reducing the financial gains by the insurer.
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Figure 3. Original Price in Reais, Adjusted Price (R$), Histogram and Normal QQ-Plot for the

adjustment price series in Reais.

The Ljung-Box test was applied for the adjusted price series (p-value = 0.03963)

and it is squared (p-value = 0.00864). There is absence of serial autocorrelation and

presence of conditional heteroscedasticity at a significance level of 0.01. Therefore,

the modeling of heteroscedasticity was performed using models from the GARCH(m,n)

family.

Table 4 presents the values of the AIC and BIC criteria and the maximum log like-

lihood for the GARCH(m, n) family models with t-Student errors for the adjusted price

series. The model chosen was GARCH (1,1) with t-Student errors by the criteria AIC and

BIC.

The Ljung-Box test was applied to the residuals of the chosen model, with p-value

0.626727. Considering a significance level 0.01, the test indicates no autocorrelation.

On the other hand, the Ljung-Box test result for the squared residuals of the chosen

model presented p-value 0.04475, which indicates absence of conditional heteroscedas-

ticity, considering a 0.01 significance level.

Table 4. AIC and BIC criteria and log-likelihood maximum values for models adjusted to the price

series in Reais

Criteria GARCH(1,1) GARCH(2,1) GARCH(2,2)

AIC 2.85 2.86 2.86

Price (R$) BIC 2.90 2.91 2.92

LLV 642.24 642.42 641.74

Therefore, with the simulated yield series of the OLLN distribution for each selected

municipality and the residual of the GARCH model (1,1) for the adjusted price, the two-

dimensional copula model was adjusted.
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Table 5 presents the AIC and BIC values for the adjusted Copulas for the selected

municipalities. For both municipalities, the copula that best fits the data structure is the

Frank Copula with parameter δ =−0.3358 and standard error (0.289).

Table 5. AIC and BIC Criteria Values for Copula Selection

Criteria Frank AMH Joe Gaussiana t Gumbel

Cascavel AIC 0.55 0.66 2.00 1.11 3.11 2.00

BIC 4.67 4.78 6.12 5.23 11.35 6.12

Toledo AIC 0.55 0.66 2.00 1.11 3.11 2.00

BIC 4.67 4.78 6.12 5.23 11.35 6.12

Therefore, the premium rate for Cascavel and Toledo is the same, as these mu-

nicipalities have the same dependency structure between productivity and price. The

discussion of revenue insurance premium rates using the selected Copula is presented

in subsection 6.1.

5.3 Three-dimensional Analysis for Revenue Contract

In this section, the dependency structure between yield, CME price, and the EXG rate

is considered, that is, the variability of the exchange rate in the modeling is taken into

account.

Table 6 presents the descriptive statistics for the adjusted price series (US$) and the

EXG rate

Table 6. Descriptive Statistics for Adjusted Price Series (US$) and EXG rate (Reais)

Series Mean Median Std Dev Asymmetry Kurtosis Max.Value Min.Value CV (%)

Price 21.25 21.15 1.36 0.34 2.04 24.65 19.19 6.40

EXG rate 3.47 3.39 0.31 0.46 1.91 4.19 2.99 9.05

Note that the adjusted price has an average 21.254 (US$ per 60kg bag), standard

deviation(Std Dev) 1.361, and coefficient of variation 6.40%. On the other hand, the av-

erage EXG rate is 3.47 Reais and standard deviation 0.314. In addition, the coefficient of

EXG rate variation is higher than that of the price, respectively, with 9.05% and 6.40%.

Indicating that the exchange rate risk is greater than the price risk, which is expected,

as the exchange rate is influenced by many other variables than just commodity price.

Figures 4 and 5 show the adjusted price (differential price) for CME and the EXG

rate, their histograms, and the normal Q×Q-plot graph, respectively. Both price series

fluctuate around zero, appearing to be stationary; however, they have a time-dependent

variability (volatility). In addition, the histogram for both series has a higher central

part than a normal one, and values are quite far from the central positions of the data.

These facts are characteristic of financial returns and are described by the Kurtosis

measurement (5.168 and 6.689 for CME and EXG rate, respectively). In addition, the
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Figure 4. Price, Histogram, and Normal QQ-Plot for the CME Daily Adjustment Price Series.

normal QQ-plot graph shows that the adjusted series have tails heavier than normal

thus it is suggested that they are leptocurtic.

The CME price and EXG rate adjusted price series are white noise, that is, they do not

present temporal autocorrelation, according to the Ljung-Box test at 0.05 significance

level, whose results are presented in Table 7. Therefore, both non-autocorrelated price

series are adopted.

The existence of conditional heteroscedasticity was confirmed by the Ljung-Box

tests at 0.05 significance level for both squared series (Table 7).

For conditional heteroscedasticity modeling, we used the GARCH models (m, n) with

t-Student errors. Table 8 shows the AIC, BIC, and log-likelihood maximum (LLM) values
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Figure 5. Price, Histogram, and Normal QQ-Plot for the EXG rate series.

Table 7. Ljung-Box test results for squared CME prices (rcme) and EXG rate (r dolar) adjusted

price series.

Series rcme rdolar rcme×rcme rdolar×rdolar

p-valor 0.54 0.37 0.05 1.31×10−4

for the CME and dollar price-adjusted models. By the BIC criterion, the lowest value for

both series is for GARCH (1,1) with t-Student errors.

The Ljung-Box tests for GARCH model residuals (1,1) with t-Student errors for CME

price and USD quote presented p-value=0.5505 and p-value=0.7138, respectively. The

Ljung-Box test results for the squared residuals of the model presented p-value=0.4886

and p-value=0.2777 for CME and EXG rate, respectively. These results indicate that the
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model assumptions are verified, that is, absence of temporal autocorrelation and con-

ditional heteroscedasticity in the residuals, respectively. Therefore, the GARCH models

(1,1) with t-Student errors were selected for adjusted CME prices and EXG rates.

Table 8. Values of the AIC and BIC criteria and maximum log-likelihood(LLM) for GARCH models

(m, n) with t-Student errors to the CME prices and EXG rate series

Criteria GARCH(1,1) GARCH(2,1) GARCH(2,2)

AIC −0.18 −0.18 −0.18

CME price BIC −0.13 −0.13 −0.12

LLM −45.42 −46.99 −47.95

AIC −3.74 −3.73 −3.74

EXG rate BIC −3.69 −3.68 −3.68

LLM −853.24 −853.13 −855.90

Figure 6 presents Chi-Plot for the pairs of variables (Toledo yield, CME price), (Toledo

Yield, EXG rate), and (CME price, EXG rate). The graphs suggest a negative dependence

between the pair of variables (CME price, EXG rate) and independence between the

pairs (Yield, CME price) and (Yield,EXG rate). Thus, the CME price variable may be nega-

tively correlated with the EXG rate quote, which may reduce the impact of price risk on

insurance pricing.

Figure 7 presents the result of the empirical copula independence test of random

variables proposed by Genest and Rémillard (2004). The heights of the bars represent

the values of the test statistics by subset of variables and the black ball represents the

critical value of the test. In addition, the first bar represents the test result for the set

of variables 1,2, where 1 represents the variable yield, 2 the CME price, and 3 the EXG

rate series.

At 0.05 of significance level, the subset variables (1,2) and (1,3) can be consid-

ered independent. On the other hand, the subset of variables (2,3) is considered de-

pendent and variables 1,2 and 3 are considered mutually independent. Therefore, the

yield, price, and EXG rate variables were randomly generated and are considered inde-

pendent.

Table 9 presents the values of AIC and BIC criteria and the maximum log-likelihood

(MLL) for the different copulas for the yield variables, adjusted CME, and EXG rate price

in Toledo and Cascavel. According to all selection criteria, the t-Student Copula best

represents the data dependency structure.

Table 10 presents the selected models with the selected parameter vector of the trio

of variables. Note that for both municipalities, the selected copula was t-Student with

parameters (ρ1,ρ2,df) = (0.5458;0.0896;1.84). The inference was based on the pseudo-

maximum likelihood with symmetric positive matrix structure characterized by toeplitz

(dispstr = toeplitz).

Therefore, the revenue insurance premium rate for both municipalities is the same,

as the copula parameters are the same. This was expected, since we are working with

the same price and EXG rate series, changing only the simulated yield (with very similar

parameters between both municipalities).
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Figure 6. Chi-Plot for variable pairs (Yield, CME price)

Table 9. AIC, BIC, and maximum log-likelihood (MLL) criteria for Copula Selection.

Criteria Clayton Frank Gumbel Joe Gaussian t

AIC −116.40 −115.66 −101.40 −67.12 −106.27 −450.55

Toledo BIC −112.28 −111.55 −97.28 −63.00 −102.15 −438.20

MLL 59.20 58.83 51.70 34.56 54.14 228.28

AIC −116.40 −115.66 −101.40 −67.12 −106.27 −450.55

Cascavel BIC −112.28 −111.55 −97.28 −63.00 −102.15 −438.20

MLL 59.20 58.83 51.70 34.56 54.14 228.28

The fact that the price and EXG rate series are the same in both municipalities makes

yield important in differentiating the rates of municipalities. The risk rate cannot be
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viewed solely as a direct proportionality of risk. For example, the standard deviation of

simulated yield in Toledo is approximately 39% higher than that of Cascavel; neverthe-

less, it cannot be said that the Toledo rate is 39% higher than that of Cascavel.

Table 10. Selected models for revenue insurance pricing with dependency parameters.

Data Copula Parameters

(Toledo,CME price,EXG rate) t-Student (ρ1,ρ2,df) = (0.5458;0.0896;1.84)
(Cascavel,CME price,EXG rate) t-Student (ρ1,ρ2,df) = (0.5458;0.0896;1.84)

6. Discussion

6.1 Two-dimensional Revenue Agreement

Table 11 presents the pure rate and the commercial rate (with 20% loading) for the

bivariate case for Frank Copula (δ =−0.3358), with N = number of observations.

For N = 454, we used the simulated yield series of the OLLN distribution with N

= 454 observations and the adjusted price series in Reais, where (Ye) was calculated

by the arithmetic average of the last 15 days to from Aug 8, 2016 (date of insurance

contracting).

On the other hand, for N = 20,000, we considered 20,000 simulated observations of

adjusted Copula of adjusted series. In addition, for the expected price Ye, we used the

average of the Copula simulated price vector with 20,000 observations.

Note that the simulated pure rate (for N = 20,000) of the coverage level (CL) in-

surance premium of 60% and 70% corresponds to 4.682% and 7.115%, respectively.
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Considering the commercial EXG rate for the coverage level of 60% and 70% is 9.365%
and 14.230% respectively. Note that the higher the level of coverage, the higher the

insurance premium rate.

Table 11. Pure and Commercial Rate in % for the two-dimensional revenue insurance premium

for the municipalities of Toledo and Cascavel using the Frank copula (δ =−0.3358)

N 60% 65% 70% 75% 80%

454 Pure rate 4.50 5.39 6.45 7.65 8.95

Commercial Rate 9.00 10.77 12.89 15.31 17.90

20 000 Pure rate 4.68 5.84 7.12 8.48 9.97

Commercial Rate 9.37 11.68 14.23 16.97 19.93

Table 12 presents the average commercial revenue insurance premium rate us-

ing the selected copula with N = 454 observations and insurer A rates for coverage

levels(CL) 60 − 69% and 70 − 79%. Note that the rate calculated in this study is well

above those applied by the insurance market. For example, insurer A rate is 63.32%
and 40.28% of the rate calculated by the Copula for CL of 60-69% and 70-79%, respec-

tively.

Therefore, there is evidence of an underestimation by insurer A, which may lead to

a large loss for the insurer, as it may be considering a much lower risk.

Table 12. Average commercial rate for revenue insurance using copula and insurer A rate for

Toledo and in parenthesis for Cascavel

Model 60−69% 70−79%

Copula 9.89 14.10

insurer A 6.26 5.68 (5.52)

6.2 Three-dimensional revenue agreement

From a three-dimensional approach, the selected Copula for both municipalities is the

t-Student with parameters (ρ1,ρ2,df) = (0.5458;0.0896;1.84). Table 13 presents the pure

premium revenue insurance rate and the commercial rate in % with 20% charge rate

and coverage level 60%, 65%, 70%, 75% and 80% for N = 454 (adjusted prices), and N =

20,000 simulated observations of the selected Copula.

Note that for CL = 65% and CL = 80%, the pure premium rate is 1.360% and 3.230%,

respectively.

Comparing Tables 11 and 13, for all levels of coverage, the rate calculated by the

bivariate Copula is overestimated when compared to the three-dimensional Copula.

Moreover, when considering exchange as a random variable, the rate calculated by

the three-dimensional approach (CL = 80%) is almost threefold lower than that calcu-

lated under the two-dimensional approach, in which EXG rate variability is not taken

into account.
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Therefore, when the EXG rate variable is added to the modeling, there is a decrease

in the revenue insurance premium rate. This decrease may be related to the incorpora-

tion of the negative correlation between price (US$) and the EXG rate into the model,

which may be leading to risk neutralization between these variables. In other words, the

negative dependence that exists between prices and the EXG rate may be nullifying the

risk of these variables in modeling.

Table 13. Pure and Commercial Charging Rates (20%) for revenue Insurance using t-Student

copula for Toledo (Yield, CME Price, EXG rate)

N 60% 65% 70% 75% 80%

N=454 Pure rate 0.955 1.410 1.937 2.589 3.378

Commercial rate 1.911 2.820 3.874 5.178 6.755

N=20000 Pure rate 0.947 1.360 1.869 2.486 3.230

Commercial rate 1.894 2.719 3.738 4.973 6.459

Table 14 presents the commercial rate for coverage level 60−69% and 70−79% cal-

culated by the three-dimensional copula and insurer A. For both coverage level ranges,

insurer A is overestimating the insurance rate when compared to the copula methodol-

ogy.

Rate overestimation can hamper securing insurance throughout the Brazilian terri-

tory as well as attracting producers with greater risk of compensation, thus increasing

the problem of adverse selection.

Table 14. Commercial Average Rates for Revenue Insurance using t-Student Copula and Insurer

A.

CL Copula Insurer A

60−69% 2.36 6.26

70−79% 4.52 5.68

7. Conclusion

Only two insurance companies offer agricultural revenue insurance in the Brazilian in-

surance market. Insurance company A takes into account the series of municipal annual

yields and the physical price (CEPEA/ESALQ indicator) in pricing its municipality. On the

other hand, insurer B differs by using the futures series negotiated at CME, already

converted into Reais.

Therefore, this study proposes alternative methods for the calculation of the pre-

mium insurance premium rate. The Copula method was analyzed under two ap-

proaches: two-dimensional and three-dimensional. The two-dimensional approach takes
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into account yield and price risk in Reais. On the other hand, the three-dimensional ap-
proach takes into account yield, CME price, and exchange rate variables.Moreover, un-
derstanding the relationships among these three variables is the main contribution of
the study.

This study used the annual soybean yield series for the municipalities of Toledo and
Cascavel, the soybean prices traded at CBOT/CME due March 2017, and the USD ex-
change rate during the same period. Yield was simulated from the OLLN distribution,
price and USD series were adjusted by GARCH (1,1) models with t-Student errors for
volatility modeling.

From the two-dimensional approach, the best-fit dependency structure was the
Frank Copula with the negative dependency parameter (δ = −0.3358). The results sug-
gest that the insurance market underestimates the insurance premium rate when com-
pared to the copula methodology. Underestimating the rate leads the insurer to risk
loss, which may lead to financial losses. In addition, insurers take into account a lower
risk than should be taken into account when pricing the product.

From the three-dimensional approach, the best-fitting copula was t-Student with
parameters (ρ1,ρ2,df) = (0.5458;0.0896;1.84). The rate calculated under this approach
is lower than the one presented under the two-dimensional approach, because in this
case, the random USD rate variable in the modeling was taken into account. Thus, there
is the incorporation of an exogenous variable into the modeling, which has a great in-
fluence on soybean prices in the Brazilian context. This decrease may be related to the
incorporation of negative dependency between price (US$) and the USD rate into the
modeling, which may lead to risk neutralization between these variables.

In addition, the results suggest that rates applied by insurers may be overpriced
when compared to the three-dimensional copulation model. This overpricing can attract
high-risk producers, increasing the problem of adverse selection and making it difficult
to massify the crop insurance among farmers.
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