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Abstract

High heritability and strong correlation have been observed in breast and ovarian cancers. However, their shared 
genetic architecture remained unclear. Linkage disequilibrium score regression (LDSC) and heritability estimation from 
summary statistics (ρ-HESS) were applied to estimate heritability and genetic correlations. Bivariate causal mixture 
model (MiXeR) was used to qualify the polygenic overlap. Then, stratified-LDSC (S-LDSC) was used to identify tissue 
and cell type specificity. Meanwhile, the adaptive association test called MTaSPUsSet was performed to identify 
potential pleiotropic genes. The Single Nucleotide Polymorphisms (SNP) heritability was 13% for breast cancer and 
5% for ovarian cancer. There was a significant genetic correlation between breast and ovarian cancers (rg=0.21). 
Breast and ovarian cancers exhibited polygenic overlap, sharing 0.4 K out 2.8 K of causal variants. Tissue and cell 
type specificity displayed significant enrichment in female breast mammary, uterus, kidney tissues, and adipose 
cell. Moreover, the 74 potential pleiotropic genes were identified between breast and ovarian cancers, which were 
related to the regulation of cell cycle and cell death. We quantified the shared genetic architecture between breast 
and ovarian cancers and shed light on the biological basis of the co-morbidity. Ultimately, these findings facilitated 
the understanding of disease etiology.
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Introduction
Breast and ovarian cancers were the major gynecologic 

malignancies with high morbidity and mortality (Smith 
et al., 2019). Breast cancer was the leading cause of cancer 
incidence worldwide in 2020, with an estimated 2.3 million 
new cases, representing 11.7% of all cancer cases in women 
(Sung et al., 2021). Ovarian cancer, one of major malignancies 
of the reproductive system, had the highest mortality rate 
among female cancers in North America, with 313,959 new 
cases and 207,252 deaths in 2020 (Sung et al., 2021). And 
the incidences of breast cancer and ovarian cancer tended 
to be younger. They have become a major burden of cancer 
worldwide, greatly affecting women’s health and quality of 
life with high recurrences and low survival rates (Vergote 
et al., 2010; Valastyan and Weinberg, 2011). 

Although breast and ovarian cancers were clinically 
different types of malignant tumors, the number of patients 
with primary breast cancer combined with ovarian cancer 
was increasing. A Danish cohort study previously showed a 
significantly increased risk of breast cancer in women whose 
benign ovarian tumors were confined to solid ovarian tumors, 
suggesting some correlation between the two cancers (Gottschau 

et al., 2019). In addition, there were significant familial risks 
and the cumulative risks were higher in monozygotic than 
dizygotic twins, with heritability of 31% for breast cancer 
(Möller et  al., 2016) and 22% for ovarian cancer (Mucci 
et  al., 2016). Genome-wide association studies (GWAS) 
had identified more than 100 breast cancer susceptibility loci 
(Michailidou et al., 2013, 2017; Milne et al., 2017) and over 
20 ovarian cancer susceptibility loci (Bojesen et al., 2013; 
Permuth-Wey et al., 2013; Phelan et al., 2017). Meanwhile, 
there were over five loci associated with susceptibility of the 
both cancers (Merajver et al., 1995; Bojesen et al., 2013). For 
example, carriers of BRCA (breast cancer susceptibility gene) 
genetic mutations had been found to be at high risk of breast 
and ovarian cancers (Merajver et al., 1995). The pleiotropic 
genes had largely remained unknown due to limitations of 
traditional analytical methods. Moreover, univariate analysis 
could not comprehensively explore the genetic basis shared 
by the two cancers. Bivariate analysis could quantitatively 
estimate the shared genetic variants specific to cancers and 
improve our understanding of the polygenic structure and their 
relationships. Therefore, cross omics research could capitalize 
on this shared genetic architecture to identify pleiotropic 
variants in breast and ovarian cancers.

Here, we conducted an array of post-GWAS analyses to 
explore the genetic architecture of breast cancer and ovarian 
cancer including genetic correlations, tissue and cell type 
specificity, and pleiotropy. First, the MiXeR and ρ-HESS 
were applied to quantify the magnitude of genetic overlap 
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and estimate the local genetic correlations, respectively. Then, 
the heritability proportion for specific functional categories 
was evaluated to identify tissue and cell type specificity by 
S-LDSC. Finally, the novel adaptive association analysis based 

on a class of sum of powered score (SPU) tests was applied 
to detect pleiotropic genes of breast and ovarian cancers 
(Kwak and Pan, 2017). A flowchart of our analysis strategy 
was provided in Figure 1.

Figure 1 – Flow chart of study design.

Material and Methods

Study design and study samples 

Summary statistics with breast cancer were obtained 
from a combined study including the Breast Cancer Association 
Consortium (BCAC, website: http://bcac.ccge.medschl.cam.
ac.uk/), Discovery, Biology and Risk of Inherited Variants 
in Breast Cancer Consortium (DRIVE), Collaborative 
Oncological Gene-environment Study (iCOGS) and several 
other GWAS meta-analyses (Michailidou et  al., 2017). It 
included 228,951 variates in 122,977 cases of breast cancer and 
105,974 controls. Summary statistics with ovarian cancer were 
obtained from the Ovarian Cancer Association Consortium 
using an Illumina Custom Infinium array (OCAC, website: 
http://ocac.ccge.medschl.cam.ac.uk/). It included 66,450 
variates in 25,509 cases and 40,941 controls (Phelan et al., 
2017). The summary statistics were based on imputation to 

the 1,000 Genomes Project Phase 3 reference panel. The 
current results were for women of European ancestry only. 
The GWAS analysis for each disease was adjusted for principal 
components, including P, regression coefficients and standard 
error, using PLINK. More details about the cohorts and quality 
control (QC) process were explained in Michailidou et al. 
(2017) and Phelan et al. (2017). For the gene-level analysis, 
SNPs were removed with missing values or outliers, and end 
up with 10,723,398 SNPs for breast cancer and 18,169,480 
SNPs for ovarian cancer left for analysis.

LD score regression analysis

Linkage disequilibrium score regression provided 
heritability and confounding biases in SNPs based on summary 
statistics released from GWAS (Bulik-Sullivan et al., 2015; 
Zheng et al., 2017). Therefore, the SNP-based was apprised 
heritability due to genotyped and imputed SNPs (h2

SNP, i.e. the 

http://bcac.ccge.medschl.cam.ac.uk/),
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proportion of phenotypic variance in a trait can be explained 
by common genetic variants tagged on SNP arrays) of each 
cancer using LDSC (Python 2.7). And we used bivariate LDSC 
to evaluate genetic correlations (rg, i.e. the proportion of genetic 
variance shared by two traits divided by the square root of the 
product of their SNP heritability estimates) between breast 
and ovarian cancers. The 1,000 Genomes Project population 
of European ancestry was used as a reference group to ensure 
the quality of imputation (Auton et al., 2015).

Assessing local SNP-heritability and genetic 
correlations

The ρ-HESS method (Shi et  al., 2017) was used to 
evaluate local SNP-heritability and local genetic correlations 
from summary GWAS data (i.e. Z scores, effect sizes, and their 
SEs). This method divided the genome into 1,703 regions with 
an average size of nearly 1.5 MB (Berisa and Pickrell, 2016). 
Based on the 1,000 Genomes Europeans reference of hg19 
genome build, the ρ-HESS could estimate the local genetic 
heritability per trait and genetic covariance between traits, 
then calculated the local genetic correlations from genetic 
heritability and covariance estimates.

Quantification of polygenic overlap using MiXeR

Derived from causal mixture models applied to GWAS 
summary statistics, the MiXeR tool (https://github.com/
precimed/mixer) was used to quantify the shared and unique 
polygenic components behind complex phenotypes. In cross-
traits analysis, based on the assumption that only a small 
fraction of variants affected the trait, the bivariate MiXeR 
model additive genetic effects as a mixture of four components 
(Frei et al., 2019),  
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where π0 was the proportion of null SNPs in the two traits. The 
π1 and π2 were proportions of SNPs with particular effects on the 
first and second trait, respectively, and π12 was the proportion 
of SNPs with an effect on both traits. In a variance-covariance 
ρ12 matrix, denoted the correlation of effect sizes in the shared 
component, and σ1

2  and σ2
2  indicated the variance of effect 

sizes of effective SNPs for the two traits. To estimate the 
number of effective variants, 1,000 genomes of Europeans 
was used as a reference panel. 

Partitioning heritability

The method S-LDSC (Finucane et  al., 2015) which 
partitioned heritability into different categories was used to 
calculate category-specific enrichments to identify the genomic 
function, tissue and cell type specificity. A ‘full baseline model’ 
was created from 24 publicly available master annotations 
that contained a total of 53 functional categories. To prevent 
our estimates from being biased upwards by enrichment in 
neighboring regions (Gusev et al., 2014), the full baseline 
model also included 500-bp windows around each functional 
category, as well as 100-bp windows around ChIP-seq peaks 
appropriately (Finucane et al., 2015). Based on the full baseline 

model, genomic functional specificity was performed. The 
tissue specificity analyses was used based on Genotype-
Tissue Expression (GTEx) data that described variation in 
gene expression levels across 53 non-diseased human primary 
tissues (Battle et al., 2017). Then cell-type-specific analyses 
were conducted from the four histone marks H3K4me1, 
H3K4me3, H3K9ac, and H3K27ac. Each cell-type-specific 
annotation corresponded to a histone mark in a single cell 
type, with a total of 220 annotations (Finucane et al., 2015). 
The 220 cell-type-specific annotations were grouped into 10 
new cell-type group annotations including adrenal/pancreas, 
central nervous system, cardiovascular, connective/bone, 
gastrointestinal, immune/hematopoietic, kidney, liver, skeletal 
muscle, and other (Finucane et al., 2015).

MTaSPUsSet test for pleiotropic genes

There were d SNPs with additive genotype scores 
g = (g1,...gd)', where gj was the number of minor alleles of the 
jth SNP; there were m > 1 quantitative or binary phenotypes 
Y = (Y1,...Ym)' let c = (c1,...cl)' denoted a set of covariates. This 
method considered a phenotype Yb by applying a generalized 
linear model:

g[𝐸𝐸(𝑌𝑌�)] = 𝛽𝛽�� +�𝑔𝑔�𝛽𝛽��
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where g() was a canonical link function. This method was 
interested in testing H0:βbj = 0 for all b = 1,...,m and j = 1,...,d. 
For a given dataset {(Yib,gi,ci):i = 1,...,n} with n subjects, the 
score Zb for βb was 
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Based on summary statistics, we conducted the multiple 
traits-single gene association analysis and single trait-single 
gene association analysis, respectively, and the calculation 
formula was as follows (Kwak & Pan, 2017) 
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where Z(b) was the bth row vector of the matrix Z such as the 
Z scores for the bth traits (b ∈ {1,2}).

Finally, this method defined adjustive tests with 
γ1 ∈ Γ1 = {1,2,4,8} and γ2 ∈ Γ2 ={1,2,4,8} to choose adaptively: 
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where pSPUs(γ1;Z) was the P value for aSPUs(γ1;Z). The 
pMTSPUsSet(γ1,γ2;Z) was the P value for MTSPUsSet(γ1,γ2;Z). 

We explored marker-multiple cancers association using 
the Z-score for each SNP to narrow the differences between 
cancers. The SPU tests gave higher weight to larger Z-scores 
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as their corresponding traits were more likely to be associated 
with the SNPs. The association between a single gene and a 
single trait was conducted by aSPUs tests. And the associations 
between a single gene and multiple traits were performed 
by MTaSPUsSet tests. To enable these tests, several data 
processing steps were conducted, including pruning SNPs 
and gene annotation. Firstly, a linkage disequilibrium (LD)-
based SNP pruning method was employed to eliminate large 
pairwise correlated SNPs and keep a set of 140,722 SNPs. 
The HapMap 3 CEU genotypes were used as the reference 
panel. Secondly, based on the hg19 human dataset which 
was downloaded from the website: http://www.genome.
ucsc.edu/cgi-bin/hgTables, gene annotation was performed 
for the pruned SNPs. A total of 67,657 common SNPs were 
located in 12,553 gene regions, which were eventually used 
to identify polymorphic variants.

Functional annotation

The gene set analyses were implemented by using gene 
annotations of Gene Ontology (GO) functional categories, 
cancer gene neighborhoods (CGN) and cancer modules (CM) 
to investigate the biological insights of the pleiotropic genes. 
Moreover, protein-protein interaction (PPI) analysis was 
conducted to provide crucial protein functional associations 
of pleiotropic genes for visualization and molecular discovery 
(Szklarczyk et al., 2017) by using an available STRING dataset 
(website: https://string-db.org/).

Statistics analysis

The threshold was adjusted for nominal significance 
using the Bonferroni correction method (Ranstam, 2016). 
For the ρ-HESS method, the significance threshold of local 
SNP-heritability and local genetic correlations was set at 
P<0.05/1,703=2.9×10-5. And the significance threshold 
was set at P<0.05/53=9.4×10-4 for genomic function and 
tissue specificity. The significance thresholds were set 
at P<0.05/220=2.3×10-4 for cell-type specificity and at 
P<0.05/10=5×10-3 for cell-type-group specificity. For the 
MTaSPUsSet test and aSPUs test, P<3.75×10-6 (=0.05/12,553) 
was confirmed significant. All statistical analysis methods 
were preformed with LDSC software (version v1.0.1), the 
aSPU package of PLINK 1.9 and R 4.0.4. 

Results 

Heritability estimates of breast cancer and ovarian 
cancer

LDSC analysis results showed that the liability-scale 
SNP heritability (without constrained intercept) was 13% 
for breast cancer and 5% for ovarian cancer. After removing 
genome-wide significant (P < 5×10−8) loci, 32% decrease 
in SNP-heritability for breast cancer and 13% decrease for 
ovarian cancer were observed, despite the fact that only 0.2% 

(breast cancer) to 0.03% (ovarian cancer) of the genome were 
excluded. And SNP-heritability were partitioned into 53 
genomic functional annotations. The Conserved_LindbladToh 
showed a significant enrichment for breast cancer. The 
enrichment results of genomic functional annotations for 
breast and ovarian cancers were presented in Table S1.

Genetic correlations between breast cancer and 
ovarian cancer

The genome-wide genetic correlation genetic correlations 
analysis showed that there was a statistically significant 
between breast cancer and ovarian cancer (rg=0.21, se=0.06). 
A total of 37 statistically significant regions were identified 
for breast cancer and 1 statistically significant region was 
identified for ovarian cancer, with a significance threshold 
of P  <  0.05/1,703=2.9×10-5 (Table S2). For local genetic 
correlations the ρ-HESS showed that no significant local 
genetic correlations was identified between breast cancer 
and ovarian cancer.

Genetic overlap between breast cancer and ovarian 
cancer

In the conditional Q-Q plot, each line displayed a 
leftward separation, indicating a polygenic overlap between 
breast cancer and ovarian cancer. The results of the Venn 
diagram, which represented the polygenic components showed 
that the breast cancer and ovarian cancer exhibited polygenic 
overlap, sharing 0.4 K out 2.8 K of causal variants (Figure 2). 
In addition, the genetic correlation estimated by MiXeR 
was generally consistent with the result by LDSC. The 
polygenic overlap was quantifying by this method, which 
could supplement genetic correlation analysis and improve 
our understanding of cross-trait genetic architectures.

Tissue and cell type specificity for breast cancer and 
ovarian cancer

For tissue specificity, significant heritability enrichment 
was observed in breast mammary and uterus tissues in breast 
cancer, with a significance threshold of P<0.05/53=9.4×10-4.  
And there was no significant heritability enrichment for 
ovarian cancer (Figure 3, Table S3). The results of heritability 
enrichment shown that five systems were significantly enriched 
in breast cancer including gastrointestinal, cardiovascular, 
kidney, connective bone and other systems, with a significance 
threshold of P<0.05/10=P<5×10-3. But there was no system 
significantly enriched in ovarian cancer. Additionally, compared 
with other tissues, ovarian cancer also exhibited substantial 
enrichment in kidney tissue, although yielding only nominal 
significance (Table S4, Figure S1). There were 3 significant 
cell type enrichments for breast cancer and no significant 
cell type enrichments for ovarian cancer, with a significance 
threshold of P<0.05/220= 2.3×10-4 (Table S5, Figure S2).

http://www.genome.ucsc.edu/cgi-bin/hgTables,
http://www.genome.ucsc.edu/cgi-bin/hgTables,
https://string-db.org/)
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Figure 2 – Venn diagrams of unique and shared polygenic variants between cancers. 2A: The gray presented polygenic overlap between two cancers, 
the blue represented unique variants of breast cancer, and the orange represented unique variants of ovarian cancer. The numbers indicated the estimated 
quantity of effective variants (in thousands) per component, explain 90% of SNP heritability in each cancer, followed by the standard error. The size of 
the circle reflected the degree of polygenicity. 2B: Conditional Q-Q plots of observed versus expected –log10(P) values in the primary trait as a function 
of significance of association with a secondary trait at the level of P < 0.1, P < 0.01, P < 0.001, respectively. 

Figure 3 – Tissue type-specific enrichment of SNP heritability for cancers. The x-axis represented each of the 53 tissue types, y-axis represented the log-
transformed P-values of coefficient Z scores. The horizontal grey dash line indicated P-threshold of 0.05; horizontal red dash line indicated P-threshold 
of 0.05/53.
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Pleiotropic genes between breast cancer and 
ovarian cancer

In total, 140,721 SNPs were mapped to 12,553 genes. The 
MTaSPUsSet tests showed a total of 81 genes were associated 
with breast cancer and ovarian cancer (Bonferroni correction 
P<3.75×10-6) (Figure S3). The aSPUs tests showed there were 
78 genes associated with breast cancer and 8 genes associated 
with ovarian cancer (Bonferroni correction P<3.75×10-6) 
(Figure 4). By aggregating the results of these two tests, the 
pleiotropic genes those were statistically significant were 
defined by the MTaSPUsSet test and statistically significant by 
the aSPUs test for at least one cancer. Eventually, 74 potential 
pleiotropic genes were found (Table S6). Notably, the gene 
TERT was significantly associated with both breast cancer 
and ovarian cancer detected by the two tests.

Functional annotations of pleiotropic genes

To explore the biological pathways of pleiotropic 
gene enrichment, gene-set analyses were conducted. We 
identified 23 significant GO functional terms focusing 
on the regulation of cell cycle, cell death and female sex 
differentiation. In addtion, 19 cancer gene neighborhoods 
and one cancer module were found for both cancers. The 
information on significant pathways was shown in Table S7. 
Considering that the activity and function of proteins were 
usually modulated by other interacting proteins, the PPI 
analysis was applied to visualize the interaction of pleiotropic 
genes. And we observed two major different gene clusters 
containing LSP1 cluster and ESR1 cluster, which were 
related to the regulation of cell cycle, cell death and female 
sex differentiation (Figure 5).

Figure 4 – Manhattan plot with –log10(P) values of aSPUs test. The black line is a threshold with the –log10(P) value of 5.40 corresponding to P < 
3.75×10-6. If the –log10(P) value of a certain gene was >5.40, this gene was identified as significant for the trait. From the inside out, the first ring is the 
aSPUs test for gene with breast cancer association, the second ring is gene with ovarian cancer.
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In the present study, a comprehensive analysis was 

performed to explore the shared genetic architecture and 
pleiotropy of breast and ovarian cancers. It verified the 
strong genetic correlation between the two cancers and the 
heritability was enriched in breast mammary, uterus, kidney 
and adipose cells. Based on integration of the resultes of 
aSPUs and MTaSPUsSet tests, 74 potential pleiotropic genes 
which were related to the regulation of cell cycle, cell death 
and female sex differentiation were detected. These findings 
provided methodological insights into the analysis of the 
shared genetic structure of diseases with similar genetic factors 
for reference, thus potentially provided intervention targets.

The occurrence of breast cancer and ovarian cancer 
was known to be influenced by genetic factors (Hulka, 1997), 
consistent with the heritability analysis in our study. Most of the 
genetic effects were attributed to other undiscovered variants, 
although genome-wide significant variants accounted for a 
portion of the heritability of breast cancer and ovarian cancer. 
The significant heritability enrichment of conserved regions 
revealed the biological importance for breast cancer, consistent 
with the fact that ultra-conserved regions of transcription 
tended to be located at vulnerable sites (Finucane et al., 2015). 
A significant genetic correlation (rg=0.21) and polygenic 
overlap between breast and ovarian cancer was observed, 
which were broadly in line with previous estimates (Jiang 
et al., 2019; Si et al., 2021). These evidences suggested that 
these cancers could not be regarded as completely independent 

diseases (Amundadottir et al., 2004; Frank et al., 2017) and 
genetic factors made a strong contribution to the comorbidity 
of breast cancer and ovarian cancer. Tissue type specific 
analysis revealed substantial heritable enrichment of breast, 
uterus and kidney tissue in women with breast cancer and 
ovarian cancer. It revealed that alterations in these regions of 
women were responsible for triggering cancers. This result 
was consistent with the fact that these regions affected the 
levels of sex hormones (Miller, 2009; Gibson et al., 2020) 
and thus played roles in the growth of breast and ovarian 
cancer (Key et al., 2013; Brown and Hankinson, 2015). Cell 
type specific analysis revealed the prominent role of adipose 
cells, which was associated with the rich adipose tissue in 
the female breast. The breast adipose tissue played a major 
role in the communication of all components of the breast 
microenvironment. The interaction between breast adipose 
tissue surrounding cancer cells and vice-versa modified the 
tumor microenvironment in favor of cancer development 
(Kothari et al., 2020). 

The 74 potential pleiotropic genes were detected to 
provide further support for the shared genetic architecture of 
breast and ovarian cancers. And these pleiotropic genes were 
found to be associated with the regulation of cell cycle, cell 
death and female sex differentiation by gene-set analyses. 
There were some univariate studies of breast cancer and 
ovarian cancer being reported, respectively. However, no 
studies had quantified common genetic variation between 
these two cancers. Additionally, comparing the results from 

Figure 5 – The protein-protein interactions across pleiotropic genes for breast cancer and ovarian cancer. The network nodes are proteins. The edges 
represent the predicted functional associations. Red line indicates the presence of fusion evidence; Green line indicates neighborhood evidence; Blue 
line indicates cooccurrence evidence; Purple line indicates experimental evidence; Yellow line indicates text-mining evidence; Light blue line indicates 
database evidence; Black line indicates co-expression evidence.
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the previous univariate studies, it suggested that 54 genes have 
been reported to be associated with breast cancer or ovarian 
cancer. Our study not only validated those previous univariate 
studies, but also identified some new pleiotropic genes through 
adaptive association analysis. For example, overexpression 
of CCDC170 in breast cancer cells increased the protein 
levels of IRE1α which was an important determinant of cell 
death and survival in previous study (Maurel et al., 2014). It 
was consistent with the results of functional annotation by 
gene set analyses, where the gene was found to be involved 
in the regulation of cell death, female sex differentiation 
and cancer. Moreover, a previous study demonstrated that 
CCDC170 was fused to ESR1 in breast cancer (Veeraraghavan 
et al., 2014). The fused gene was found to promote a more 
aggressive phenotype. At the same time, we found that there 
were functional interactions between the expressed protein 
of CCDC170 and the expressed protein of ESR1, which was 
a validation of the previous study. Additionally, the TERT 
locus was previously reported to be associated with breast 
cancer and ovarian cancer (Bojesen et al., 2013). Research 
in the past few decades had revealed that the telomerase 
holoenzyme was tightly regulated by repressing its rate-
limiting component, telomerase reverse transcriptase (TERT) 
(Saretzki, 2014). And cells lacking telomerase holoenzyme 
showed increased radiation sensitivity and reduced DNA 
repair capacity (Masutomi et al., 2005), which corresponded 
to our understanding of the TERT gene involved in regulation 
of cell cycle, cell death and sequence specific DNA binding. 
In addition to the few pleiotropic genes already identified, 
the present study inspected 20 novel genes by adaptive 
association tests. For instance, our data demonstrated the 
significance of the CRHR1 gene in the GO pathway for negative 
regulation of cell death and in the cancer gene neighborhoods 
pathway based on the gene-set analyses. Prior studies had 
revealed that activation of CRH receptors reduced vascular 
endothelial growth factor synthesis and cell proliferation in 
different tumor entities (Bale et al., 2002; Hao et al., 2008). 
A previous prospective study found the contribution of 
genetic variants in hypothalamic-pituitary-adrenal (HPA) 
axis genes including CRHR1 to the risk of developing breast 
cancer (Nan et  al., 2015), which was consistent with our 
result. Moreover, our study provided new evidence to support 
previous studies on the role of CRHR1 in tumorigenesis 
progression of breast and ovarian cancer. Expression of the 
annexin family had been studied in a wide range of cancers, 
including ANXA1, ANXA2 and ANXA13 (Mussunoor and 
Murray, 2008) Annexin family members were involved in 
signal transduction, cellular differentiation, proliferation and 
thus in tumorigenesis (Lizarbe et al., 2013). Our study also 
suggested that ANXA13 played a role in tumorigenesis. The 
novel gene, FKBP8, was an intrinsic inhibitor of mTOR kinase 
that exerted an anti-apoptotic function (Bai et al., 2007). As 
one of the most frequently modified signaling pathways, the 
PI3K-Akt-mTOR axis activation maintained cancer growth 
(LoRusso, 2016). These findings provided novel evidence 
supporting shared etiology and pathogenesis for breast cancer 
and ovarian cancer. In summary, the underlyig pleiotropic 
genes may influence the regulation of the cell cycle, cell 
death and female sex differentiation, and thus play a role in 

cancer development through telomerase, protein and other 
pathways. These findings shed light on the underlying genetic 
mechanisms that on the common etiology and pathogenesis 
of breast and ovarian cancers.

Our study has several strengths. We quantified the 
genetic correlations by leveraging large GWAS summary 
statistics. Furthermore, compared to univariate statistical 
analysis, our bivariate analysis was more powerful and 
adaptive by aggregating the multiple association signals and 
reducing the burden of multiple testing. It is worth noting that 
the following limitations should be taken into account when 
interpreting results using the MTaSPUsSet tests. Firstly, due 
to the lack of biological information at the individual level, 
we were unable to determine whether the pleiotropic genes 
had a direct or indirect effect on cancer risk. Secondly, the 
biological mechanisma underlying breast and ovarian cancers 
remained understood. Therefore, further experimental studies 
based on our findings are needed.

Conclusion
Our study revealed strong genetic correlations and 74 

common pleiotropic genes across breast and ovarian cancers. 
These findings provided important clues to explore the common 
molecular mechanisms and biological processes underlying 
breast and ovarian cancers, as well as a novel statistical 
analysis strategy for studying complex diseases.
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