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ABSTRACT: From 1913 onwards, the global situation changed from a scenario of nitrogen 
(N) scarcity to an abundance of ammonia (NH3) produced synthetically via the Haber-Bosch 
process. Several N compounds have been synthesized since then, with urea becoming the 
main source of N, accounting for 55 % of current N consumption. However, N efficiency 
in agroecosystems is low and, normally, N recovery in cultivated plants is less than  
50 %. This occurs because a large amount of reactive N is lost to the environment, inducing 
various forms of pollution, threatening human and environmental health, in addition to 
causing a negative economic impact on the farmer. The main processes responsible for 
low N efficiency are NH3 volatilization, leaching, and N denitrification. Considering global 
NH3 volatilization losses of 14 %, it can be assumed that up to 8.6 million Mg of urea are 
lost every year in the form of NH3. For each ton of NH3 produced, 1.9 to 3.8 Mg of CO2 
is emitted into the atmosphere. Therefore, increasing N use efficiency (NUE) without 
compromising yield is a necessity and a challenge for crop improvement programs and 
current management systems, in addition to reducing greenhouse gas emissions. In this 
context, enhanced efficiency fertilizers (EEFs), which contain technologies that minimize 
the potential for nutrient losses compared to conventional sources, are an alternative to 
increasing the efficiency of nitrogen fertilization. Currently, EEFs are classified into three 
categories: stabilized, slow-release, and controlled-release. This study aims to understand 
the technologies used to produce EEFs and the factors that govern their availability to 
plants. This review covers the following topics: the discovery of N, N dynamics in the soil-
atmosphere system, N assimilation in plants, strategies to increase NUE in agrosystems, 
NH3 synthesis, NH3 volatilization losses, N fertilizer technologies, the importance of 
characterization of EEFs, conventional nitrate or ammonium-based fertilizers to reduce 
gaseous losses of NH3 and future prospects for the use of N fertilizers in agriculture.
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INTRODUCTION
With the advent of plant and animal domestication, early civilizations began to cultivate the 
soil, leading to the development of agriculture and allowing our ancestors to settle down 
in a fixed place. However, at that time, there was no knowledge about the importance 
of mineral elements for plant growth and development. It was common practice at 
that time to increase crop yields by enhancing the soil with animal manure, ash, or 
marl applications. Up to the end of the 18th century, chemical elements had yet to be 
discovered and named, including nitrogen (N), which was discovered by Daniel Rutherford 
(Galloway et al., 2013). 

The aforementioned achievement was fundamental to understanding that N is an 
essential nutrient for plant development. With time, N-rich biological materials began to 
be applied in agriculture to increase food production and keep up with unprecedented 
population growth. However, these N sources consisted of finite reserves of bird and bat 
feces, commonly known as guano, found on Pacific islands. At the beginning of the 20th 
century, natural N sources were replaced by chemically produced N fertilizers obtained 
using the Haber–Bosch process, wherein dinitrogen gas (N2) from the atmosphere 
reacts with hydrogen (H2) under high pressure and temperature conditions, leading to 
the formation of ammonia (NH3) (Galloway et al., 2017). Haber–Bosch process was a 
technological breakthrough in the fertilizer sector, as it enabled the production of synthetic 
N fertilizers using NH3 on a large scale, such achievement was honored with the Nobel 
Prize in chemistry in 1918 for Fritz Haber and 1931 for Carl Bosch (Erisman et al., 2008).

Unlike the world’s first civilizations, which were constrained by the limited availability 
of natural N sources, modern society is concerned about the large amount of chemical 
N used in agriculture and its undesirable effects on local ecosystems. Overall, less 
than 50 % of the N fertilizers applied into agroecosystems are absorbed by plants 
and incorporated into agricultural products (Zhang et al., 2015; Houlton et al., 2019), 
while the remaining portion ends up in water bodies and the atmosphere, leading to 
groundwater contamination, biodiversity reduction, and air pollution (Mulvaney et al., 
2009; Behera et al., 2013; Cameron et al., 2013; Martínez-Dalmau et al., 2021; Otto et 
al., 2022). Nitrogen-fertilizers are associated with acid rain (Mohajan, 2018), greenhouse 
gas emissions, and global warming (Chai et al., 2019), which is highlighted as one of the 
greatest challenges facing society today (Yoro and Daramola, 2020). Nitrogen fertilizer 
use worldwide has increased N2O (nitrous oxide) atmospheric concentrations. This is 
especially relevant because N2O is a greenhouse gas with a warming potential 298 times 
greater than carbon dioxide (Signor and Cerri, 2013). This gas is highlighted as one of the 
main greenhouse gases responsible for global warming (Tian et al., 2020). Agricultural 
activity has been identified as the main source of N2O emissions, accounting for 70 % 
of N2O emissions between 2007 and 2016 (Martínez-Dalmau et al., 2021).

Sodium nitrate, extracted from mines on the Chilean coast, was the first inorganic N 
fertilizer used by humans. Later, in 1913, the Haber-Bosch process enabled the production 
of NH3, and several N fertilizers were then developed using NH3 as raw material (Table 1).  
Urea became the most widely used N fertilizer mainly due to its high N concentration  
(46 %) and low production costs (Cantarella et al., 2018). However, when applied 
over the soil surface, urea is subjected to hydrolysis by the urease enzyme, causing 
significant losses of NH3 through volatilization. In addition to economic losses for 
the end-users, volatilized NH3 can be transferred to different environments, causing 
undesirable effects similar to those previously reported [i.e., soil acidification (Galloway 
et al., 2004), biodiversity loss (Sutton et al., 2013; Wurtsbaugh et al., 2019), and air 
pollution (Erisman et al., 2013; Hill et al., 2019)]. Although NH3 is not considered a 
greenhouse gas (GHG), it contributes indirectly to NO2 emissions (Awale and Chatterjee, 
2017; Gorh and Baruah, 2019).
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Ammonia volatilization causes significant economic constraints not only because N loss 
reduces N available for plants and decreases N-use efficiency (NUE) but also because 
growers usually overapply urea to compensate for these losses. Agricultural production 
will need to increase by 60 to 100 % from 2007 to 2050 to meet the food demands of 
the growing population (Bodirsky et al., 2014; Zhang et al., 2015). On the other hand, 
the anthropogenic input of N to the biosphere has already surpassed the planetary 
boundary (Vries et al., 2013). Bodirsky et al. (2014) and Steffen et al. (2015) calculated 
that the overall input of agricultural N should not exceed 62–100 Tg yr-1, as values above 
this threshold are predicted to produce harmful air and water pollution levels. Current 
N inputs to the agroecosystems from fertilizers have already exceeded 100 Tg yr-1 (IFA, 
2019), and the growing demand for food and biofuels will likely lead to further increases 
in N input to the ecosystem. Faced with the challenge of reducing N losses and enhancing 
NUE, fertilizer industries have developed several technologies to replace conventional 
urea, including N sources based on nitrate and ammonium (Otto et al., 2017; Corrêa 
et al., 2021) and enhanced efficiency fertilizers (EEFs) (Trenkel, 2010; Pan et al., 2016; 
Cassim et al., 2021).

While most of the food production increase over the last decades was supported by 
synthetic N fertilizers application, a huge concern is also raised due to the undesirable 
consequences of N losses from the agrosystems to biosphere (Erisman et al., 2008; 
Tyagi et al., 2022). Moreover, higher food demand predicted for the upcoming years 
(Searchinger et al., 2019) can even intensify synthetic N fertilizer usage, which may 
aggravate existing problems associated with either N fertilizers production or their 
unsustainable applications (Gao and Serrenho, 2023). 

This study addresses crucial issues associated with N discovery, its dynamic in the 
soil-atmosphere system, and paths of N assimilation by plants. Since urea stands out 
among the main N sources used for plants worldwide, this review framed the benefits 
and drawbacks inherent to urea usage. Over the past years, advancements have been 
made to decrease most disadvantages associated with urea use, such technologies were 
also lighted up herein. Through encompassing wide aspects associated with N uses, this 
review may guide stakeholders on better N management to support sustainable food 
production within the near future.

Table 1. Nitrogen concentration, salt index (SI), acidity index (AI) and chemical reactions from ammonia (NH3) and N2 gas to obtain 
the main nitrogen fertilizers

Fertilizers Chemical reactions % N SI(1) AI(2)

Urea NH3 + CO2 → CO(NH2)2 46 75 -84
Ammonium sulfate 2NH3 + H2SO4 → (NH4)2SO4 21 69 -110
Ammonium nitrate NH3 + 2O2 → HNO3 + H2O → HNO3 + NH3 → NH4NO3 32 105 -58
Sodium nitrate NH3 + 2O2 → HNO3 + H2O → 2HNO3 + Na2CO3 → 2NaNO3 + H2CO3 16 100 +29
Calcium nitrate NH3 + 2O2 → HNO3 + H2O → 2HNO3 + CaCO3 → Ca(NO3)2 + H2CO3 14 65 +19
Potassium nitrate NH3 + 2O2 → HNO3 + H2O → HNO3 + KCl → KNO3 + HCl 12 - -
MAP(3) NH3 + H3PO4 → NH4H2PO4 11 30 -65

DAP(4) 2NH3 + H3PO4 → (NH4)2HPO4 18 34 -70
Aquamony NH3 + H2O → NH4OH 10 - -
Anhydrous amm.(5) N2 + 3H2 → 2NH3 82 47 -148
N solutions NH3 + CO2 → CO(NH2)2 → CO(NH2)2 + NH4NO3 + H2O → UAN 32 74 -58

(1) Salt index: increase in the osmotic pressure of the soil solution caused by the salinity of the fertilizer, determined in relation to sodium nitrate, taking 
as index 100. (2) Acidity index: (sign -) mass (kg) of calcium carbonate (CaCO3) necessary to neutralize the acidity caused by the use of 100 kg of 
fertilizer, (sign +) equivalent alkalinity. (3) MAP: monoammonium phosphate. (4) DAP: diammonium phosphate. (5) Anhydrous amm: Anhydrous ammonia.
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This review aims to present the history of N discovery, fertilizer production, and the 
N dynamics into the soil-plant-atmosphere continuum. This study also covers the 
environmental, economic, and human health problems associated with NH3 volatilization 
and the conventional and novel fertilizer technologies to improve NUE and reduce N 
losses to produce food, fiber, and energy for the growing population.

Nitrogen discovery

Nitrogen was discovered in 1772 by Scottish scientist Daniel Rutherford (Weeks, 1934). 
Other scientists, such as Carl Scheele, Henry Cavendish, and Joseph Priestley, also 
studied the element, which they called “burnt air” in reference to the absence of oxygen. 
However, Rutherford received official credit for its discovery, as he was the first to publish 
his results (Galloway et al., 2013). Because the N2 accounts for 78 % of the air’s volume 
and is inert, chemist Antoine-Laurent Lavoisier called it azote, meaning lifeless in Greek 
(Galloway et al., 2013), a term still used in some countries, such as France. 

The term “nitrogen” was coined in 1790 by the French chemist Jean-Antoine-Claude 
Chaptal in reference to saltpeter (potassium nitrate), then known as nitro, combined 
with the French suffix gène (producer) (Bebout et al., 2013). Nitrogen was added as the 
7th element of the periodic table in 1790, and by the second half of the 19th century, N 
became known as a common element in plant and animal tissues, which was, therefore, 
indispensable for all organisms (Galloway et al., 2004). 

Before the emergence of N fertilizers obtained by chemical synthesis, farmers used to 
apply natural sources of N to fertilize plants, including cattle manure, guano, and nitrate 
mineral salts, as well as growing leguminous plants for biological N fixation (Galloway 
et al., 2013). In 1898, William Crookes, president of the British Science Association, 
communicated at a meeting in the United Kingdom that the world’s N supply was running 
out and challenged chemists to develop an industrial process to convert atmospheric N2 
into compounds that could be used for agricultural production (Galloway et al., 2017). It 
was not until 1908 that such a process was developed, when German chemist Fritz Haber 
succeeded in synthesizing NH3 by reacting atmospheric N2 with H2 (Equation 1). It would 
then be up to chemist and engineer Carl Bosch to adapt Haber’s laboratory system to 
an industrial scale, which was successfully completed five years later.

The reaction became known worldwide as the Haber–Bosch process. The nationalism 
of World War I also drove Haber–Bosch process development in Germany as a strategy 
to create a continuous supply of ammonia for use in the manufacture of ammonium 
nitrate, nitroglycerin, and trinitrotoluene. Nevertheless, the discovery leveraged food 
production to an unprecedented level. It is estimated without Haber–Bosch process, the 
amount of food produced worldwide would be sufficient to feed only 4 billion people per 
year (Erisman et al., 2008).

Nitrogen dynamics in the soil–atmosphere system

Nitrogen is the nutrient that most interacts with the environment, participating in 
numerous reactions in the soil. From greatest to least, the N reservoirs occur in Earth’s 
mantle > atmosphere > continental crust > oceanic crust > oceans > biomass (Mysen, 
2019). The higher N abundance in the mantle reflects the N cycling mechanisms through 
subduction zones over time. N-rich sediments descend into the mantle (Goldblatt et al., 
2009; Palya et al., 2011), while the remaining part is released as N2, which returns to 
the oceans and atmosphere (Mallik et al., 2018).

Atmosphere is the main N source into the soil, formed by 78 % of N2 gas, unlike other 
elements that come from rocks. Several mechanisms are involved in the transfer of 
atmospheric N to the soil. For example, atmospheric electrical discharges release large 

N H NH   atm, 400 °C
2 2 3

3003 2� � ������ Eq. 1
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amounts of energy that break the triple bond of N2 (N≡N), forming oxides that subsequently 
react with water to produce nitric acid (HNO3), which is carried to the soil by rain (Park et 
al., 2006). The major route of N entrance into the soil from the atmosphere is biological 
N fixation, whereby microorganisms convert N2 to NH3 (Equation 2) and then to other 
organic forms essential to biological systems (Cantarella, 2007). N-fixing microorganisms 
express the enzyme nitrogenase and include free-living species, such as Azotobacter and 
cyanobacteria, as well as symbiotic forms, such as bacteria from the genus Rhizobium, 
commonly found on legume roots (Batista et al., 2018).

Only about 5 % of the N is found in mineral form in soil, and organic compounds account 
for most of the soil N pool (95 %). Organic N, however, is not available to plants. For 
absorption, plants depend on N mineralization, which transforms organic N forms into 
inorganic N (NH4

+) by heterotrophic soil microorganisms. Mineralization process involves 
two steps: (i) aminization of organic N into an amino compound (R-NH2) (Equation 3) and 
(ii) ammonification of R-NH2 into ammonium ion (NH4

+) (Equations 4 and 5), as described 
by Havlin et al. (2017).

After the formation of NH4
+ in soil, the cation may follow different pathways. It can be 

immobilized by soil microorganisms, fixed onto 2:1-type clay minerals, adsorbed on the 
soil exchange complex, lost via NH3 volatilization, absorbed by plants, or further processed 
through nitrification reactions. Immobilization is the opposite of mineralization, which 
is represented by the left arrows in equations 4 and 5. It occurs when decomposing 
microorganisms require more N than they can obtain from waste materials and, therefore, 
need to consume mineral N forms from the soil solution to synthesize protein cellular 
components (Weil and Brady, 2018). Mineralization and immobilization occur simultaneously 
and depend on the C/N ratio of decomposing organic residues. As for NH4

+ fixation, a 
similar process takes place in 2:1-type clay minerals such as illite, vermiculite, and 
montmorillonite. These minerals have adsorption sites (ditrigonal spaces) for positive 
ions with a similar size to the ionic radius of K+ and NH4

+, which makes it possible to fix 
these species (Nieder et al., 2011; Scherer et al., 2014). Depending on environmental 
conditions, mineral-fixed NH4

+ may return to the soil solution and become available to 
plants (Batista et al., 2018).

Atmospheric N emissions occur naturally in soil via NH3 volatilization, mainly under 
alkaline pH conditions (Equation 6). According to Cantarella (2007), at pH 5.2, only 
0.01 % of soil N is present in NH3 form, increasing to 1 % at pH 7.2 and 50 % at pH 9.2. 
However, agricultural soils rarely contain such high pH values, which naturally limits NH3 
volatilization. Losses are intensified by applying N fertilizers, particularly urea, resulting 
in economic losses and negative environmental and health impacts. In the atmosphere, 
NH3 can be oxidized by the hydroxyl (OH) radical, forming the short-lived amino radical 
(NH2), which undergoes further oxidation with nitrogen oxide (NO), nitrogen dioxide (NO2), 
ozone (O3), or the hydroperoxyl radical (HO2) to ultimately form molecular nitrogen (N2), 
N2O or NO (Pai et al., 2023). Production of NO, N2O and N2 is dependent on the oxygen 
concentration in the atmosphere. Nitrogen dioxide and NO are produced through the 
NH3 oxidation pathways and increase as O2 concentrations decrease (Zhu et al., 2013). 
For this reason, current N2 concentrations in the atmosphere are dependent on O2 from 
photosynthesis, contributing to the complete oxidation of NH3. This process is important, 
because incomplete NH3 oxidation is responsible for around 8 % (and up to 16 %) of the 
global anthropogenic N2O source (Pai et al., 2023). 

N e H ATP  NH H ADP PiNitrogenase
2 3 28 8 16 2 16 16� � � � ����� � � �� � Eq. 2

Protein  R-NH Energy COBacteria and fungi� ������ � �2 2 Eq. 3

R-NH H O  NH R-OH Energy              
2 2 3� � ���� � � Eq. 4

NH H O  NH OH              
3 2 4� � ���� �� � Eq. 5
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Part of the NH4
+ in soil is converted to nitrate (NO3

−) through the nitrification reaction, 
which divided into two steps, as follow: (i) nitritation, whereby NH4

+ is oxidized to nitrite 
(NO2

−) by the action of bacteria from the group Nitrosomonas spp. (Equation 7), releasing 
H+, which acidifies the medium, and (ii) nitration, whereby NO2

− is oxidized to NO3
− by 

Nitrobacter spp. (Equation 8), as described by Havlin et al. (2017).

Therefore, nitrification is a reaction performed by soil microorganisms. Its intensity depends 
on the supply of NH4

+, nitrifying populations, soil pH, aeration, moisture, and temperature. 
After N is nitrified, it can be absorbed by plants, immobilized by soil microorganisms, 
denitrified, or lost by leaching. Leaching losses are the relevant route for these species, 
given that NO3

- ions are not adsorbed onto negatively charged soil colloids, and soils 
with positive charges have low adsorption energy for negative ions (H2PO4

2- > MoO4
2- > 

SO4
2- > NO3

- = Cl-) (Vieira, 1988). 

Usually, leaching losses of NO3
- are not as expressive as NH3 volatilization losses in terms 

of the amount of N. In a meta-analysis performed by Wang et al. (2019), the authors 
found overall NO3

- losses through the leaching process were on average 9 % of the N 
applied. In contrast, according to the meta-analysis of Silva et al. (2017), NH3 volatilization 
losses usually were, on average, 31 % of applied N. Nevertheless, NO3

- leaching losses 
deserve attention due to their potential to damage the environment and human health 
through surface water and groundwater contamination, which has been associated with 
the development of methemoglobinemia and stomach cancer (Ward et al., 2018). 

Denitrification occurs in soils in the absence of O2. Under these conditions, facultative 
anaerobic bacteria use NO3

- ions rather than O2 as final electron receptors during respiration 
(Cameron et al., 2013). Nitrate undergoes a four-step reaction and is ultimately reduced 
to N2, which is rapidly lost to the atmosphere (Equation 9). However, in order for NO3 to be 
reduced by microorganisms, the soil must contain available (oxidizable) C, which is used 
in the process as a source of electrons. Although denitrification is higher under anaerobic 
conditions, it can also occur in aerobic soils at sites found within soil aggregates where 
the O2 diffusion rate into pore water is 10,000 times lower than in air (Cantarella, 2007).

From an environmental point of view, denitrification is a crucial part of the global N cycle. 
It is the main biological process through which N returns to the atmosphere in the N2 
form, contributing to the removal of excess NO3

- from agricultural systems and thereby 
minimizing the eutrophication of downstream waters (Seitzinger et al., 2006). In some 
systems, however, such as flooded rice paddies, denitrification losses are much more 
relevant, accounting for up to 34 % of the applied N (Shi et al., 2020). The ratio of N2O 
to N2 formed during denitrification is determined by the availability of oxidizable C and 
NO3

− in soil (Cantarella, 2007). For example, high NO3
- concentrations almost completely 

inhibit the reduction of N2O to N2, whereas high concentrations of oxidizable C increase 
the availability of electrons, favoring the reduction of NO3

- to N2. Usually, the amount of 
N fertilizer transformed into N2O species is small, and accounts for less than 1 % of the 
N fertilizer applied (Carvalho et al., 2021).

NH  NH  H  (pKa = 9.3)              
4
� �� ���� � � Eq. 6

2 3 2 2 44 2 2 2NH O NO H O H  � � �� � �� �����Nitrosomonas Eq. 7

2 22 2 3NO O NO  � �� � �����Nitrobacter Eq. 8

NO NO NO N O  N      
e e e e

3

2

2 2 2
� �� � � � � �

� � � �

Eq. 9
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Nitrogen in plants

Nitrogen is essential for plants growth and development, it is required in large quantities 
by plants due to its participation in nucleotides and amino acids, nucleic acids, proteins, 
and photosynthesis macromolecules such as chlorophyll (Taiz et al., 2014). Symptoms of 
N deficiency in plants are: general chlorosis in older leaves and stunted growth (Figure 1). 
Transfer of N from the soil to plant roots occurs preferably by mass flow, which involves 
the passage through a mobile aqueous phase (soil solution) from a wetter region to 
a drier one close to the root surface (Malavolta et al., 1997). Plants can absorb both 
inorganic (NH4

+ and NO3
-), amidic (urea) and organic (amino acids and peptides) forms of 

N through high-affinity transporters (HATS) and low-affinity transporters (LATS) (Näsholm 
et al., 2009; Nacry et al., 2013). However, plants absorb mainly inorganic forms because 
organic N, when made available in the soil solution through organic matter mineralization, 
is rapidly metabolized by heterotrophic microorganisms and converted to inorganic N, 
as described in equations 3 to 5. 

Ammonium and NO3
- availability in the soil vary according to the aeration condition. 

While the predominant N form in aerated soil is NO3
-, NH4

+ is the dominant form under 
anaerobic and acid conditions (Zhu et al., 2011). While plant roots have uptake systems 
for nitrate and ammonium with different affinities (Xu et al., 2012), the roots of plants 
most prefer NH4

+ uptake over NO3
- (Hachiya and Sakakibara, 2017). Nitrate can only 

be used by plants after being reduced to NH4
+ via a two-step reaction catalyzed by 

enzymes. The first step occurs in the cytoplasm through the action of nitrate reductase, 
which converts NO3

- to NO2
-. The reduced ion is then transported to chloroplasts (leaves) 

or proplastids (roots), where it is converted to NH4
+ by the action of nitrite reductase 

(Li et al., 2013). Most of the NO3
- absorbed by plants is transported to the leaves for 

metabolization, as this plant component has sufficient energy reserves obtained through 
photosynthesis. Then, NH4

+ absorbed from the soil solution or produced by metabolization 
of NO3

- is assimilated into amino acids via a series of sequential reactions catalyzed by 
two enzymes, namely glutamine synthetase (GS) and glutamate synthetase (GOGAT), 
which is commonly referred to as the GS–GOGAT pathway. The GS is responsible for 
reacting NH4

+ with glutamate to form glutamine (Equation 10), an amino acid used by 
plants for intracellular N transport (Taiz et al., 2014).

High levels of glutamine in chloroplasts stimulate GOGAT activity, promoting the transfer 
of the amide group of glutamine to 2-oxoglutarate, producing two glutamate molecules 
(Equations 10 and 11). Glutamate, like glutamine, can be used as N supply to synthesize 
other amino acids through transamination reactions. It can also return to the NH4

+ 
assimilation cycle described in equation 10. Because plants have two different sites for N 
assimilation (roots and leaves), they express two types of GOGAT: nicotinamide adenine 
dinucleotide-dependent GOGAT (NADH-GOGAT) in proplastids of non-photosynthetic 
tissues, such as roots (Equation 11), and ferredoxin-dependent GOGAT (Fd-GOGAT) in 
photosynthetic tissues, such as chloroplasts (Equation 12) (Taiz et al., 2014).

In case of excess N fertilization, especially with sources that release high levels of NH4
+ 

in soil, plants switch from the GS–GOGAT pathway to an alternative route known as the 
glutamate dehydrogenase (GDH) pathway (Ashraf et al., 2018). Given that plants prefer 

Glutamate NH ATP Glutamine ADP P 
GS

i� � � � ��
4 Eq. 10

Glutamine 2-Oxoglutarate NADH H Glutamate NAD  GOGAT� � � �� ����� 2 �� Eq. 11

Glutamine -Oxoglutarate Fd Glutamate F  reduced
GOGAT� � �� ����2 2 ddoxidized Eq. 12

https://nph.onlinelibrary.wiley.com/authored-by/N%C3%A4sholm/Torgny
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absorbing NH4
+, which can be readily assimilated into amino acids, high NH4

+ levels can 
quickly saturate the GS–GOGAT pathway. Thus, to continue absorbing ammoniacal N, 
plants activate the GDH pathway (Equation 13), which, because of its lower affinity for 
NH4

+, can be used for sustained absorption and assimilation of these ions. 

In addition to causing metabolic changes in plants, excess NH4
+ can trigger competition 

and reduces the absorption of cations with lower affinity for membrane transporters, 
such as Ca2+, Mg2+, and K+ (Weil et al., 2020). Affinity of cationic species decreases in the 
following order: NH4

+ > K+ > Mg2+ > Ca2+ (Malavolta et al., 1997). Intensive absorption 
of NH4

+ can also increase soil acidity (Zhao et al., 2007). In this sense, when plants 
absorb NH4

+, they excrete a proton (H+) through the roots, formed by the dissociation 

Figure 1. Nitrogen (N) deficiency in corn plants in the field (a), corn ears at R2 phenological stage 
(Blister - kernels resemble “blisters” with clear liquid) (b), corn ears at R6 phenological stage 
(Physiological maturity – kernels at maximum dry matter accumulation (c), error in adjusting the 
machine for applying ammonium sulfate to corn crops, greener bands with more fertilizer and less 
green bands with less fertilizer (d). Soybean in nutrient solution with N (e), soybean in nutrient 
solution without N (f), sugar cane in nutrient solution with N (g), and sugar cane in nutrient solution 
without N (h). Photos a, b and d were provided by Evandro Antonio Minato. Photo c was provided 
by Bruno Maia Abdo Rahmen Cassim. Photos e, f, g and h were provided by Tadeu Takeyoshi Inoue 
and Marcelo Augusto Batista.
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of H2CO3 through respiration in an attempt to maintain the electrochemical balance 
within plant cells (Hinsinger et al., 2003). As the soil pH decreases, plants’ absorption 
of micronutrients such as Cu, Zn, Fe, and Mn increases. In the case of NO3

-, the opposite 
effect is observed (i.e., NO3

- absorption decreases soil acidity by promoting the excretion 
of OH-, formed by reducing NO3

-).

Strategies to enhance NUE: from plant to agrosystems management

Extensive efforts have been devoted to increase NUE by the cultivated plants, and when 
plant breeding is framed to reach this proposal, several components are reported to be 
involved to NUE, as a consequence, there exist various paths to gene expression and 
thereafter enhancing the parameter aforementioned (Xu et al., 2012; Do Vale et al., 
2014). Through a wide literature review, Lammerts van Bueren and Struik (2017) pointed 
out other challenging aspects associated with plant breeding aiming at improving NUE, 
to state the main limitations: i) knowledge gained improving a given plant cannot be 
adopted to another; ii) short- and long-season crops respond differently to N management, 
similar pattern is also observed for vegetative and grain producing crops. Moreover, 
plants subjected to improvement and under the existence of large interaction between 
the environment by genotype (E X G) on the expression of target traits, such interaction 
may not sustain the traits obtained in other environments (Han et al., 2015; The et al., 
2021).

Regarding the target plants’ traits sought by the plant breeders, they are quite diverse 
and specific according to the crop. Overall, several attempts have been made to improve 
the root system architecture to reach depth soil layers and potentially enhances N uptake 
(Garnett et al., 2009; Li et al., 2015; Kiba and Krapp, 2016), however, this strategy may 
be limited due to low mobility of some nutrients present within the upper soil layers, 
such as phosphorus (Ho et al., 2005). Besides enhancing N uptake, efforts have been 
devoted to increase N assimilation and remobilization by crops (Masclaux-Daubresse 
et al., 2010). Moreover, since the N is firstly assimilated into the plants through amino 
acids path [Masclaux-Daubresse et al. (2010); Equation 10], strategies to enhance 
photosynthesis and then amino acids biosynthesis are pointed as an indirect via to 
increase NUE (Hawkesford, 2014). In this sense, increasing Sorghum’s photosynthetic 
capacity through extending leaf greenness favoured higher N uptake (34 kg ha-1) during 
the grain filling as compared with the same parameter recorded for a regular hybrid 
(Borrell and Hammer, 2000). 

Despite the extensive efforts dedicated to enhance NUE by the main crops, e.g., corn, wheat 
and oilseed, and the significant correlations observed between N levels with either below 
or above ground plants’ traits, most correlations seem physiologically unclear (Lammerts 
van Bueren and Struik, 2017). To integrate various approaches inherent to the plant and 
environment (i.e., root exudate, rhizobium availability and nitrate transport system and 
physiological parameters) are suggested to unravel the complexity associated with NUE 
improving into the plants (Lammerts van Bueren and Struik, 2017; Reich et al., 2014). 

Regardless of the crop been grown, across the different agroecosystems strategic 
managements can be adopted to favour rational N management, decreasing N input or 
recycling the nutrient already applied into the agroecosystem, which in turn enhances 
NUE. In this sense, precision agriculture technologies allow analyse and managing the 
fields according to their spatial and temporal variability, thus, using precision agriculture 
the N can be applied either where is most scarce in a given field or within the plant 
stage where the N is most required (Bongiovanni and Lwenberg-DeBoer, 2004; Hedley, 
2015). Under both conditions NUE is improved, resources wastage is mitigated, while 
crop production sustainability is enhanced (Karunathilake et al., 2023). Another promising 
alternative to increase NUE is through crop rotation, cultivating a legume in rotation with 
a cash crop, which increases N fixation (Otto et al., 2020; Bohórquez-Sánchez et al., 
2023) and potentially reduces the N inputs into the systems. Besides improving NUE, 
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increasing crop diversity into the agroecosystems favoured corn yield (~28 %) and this 
management was able to mitigate grain yield losses especially under drought conditions, 
where grain yield losses preventing varied between 14 and 89 % (Bowles et al., 2020).

When conventional tillage and no-tillage systems are compared as practices to enhance 
NUE, within the short term, soil tillage in the former system increases soil organic matter 
(SOM) mineralization and thereafter the N rates mineralized, which can be either uptake 
by the plant or to be extensively lost via runoff (Zhang et al., 2020). As a result of SOM 
degradation, poor soil quality and low N availability are associated with conventional 
tillage (Govindasamy et al., 2023). On the other hand, Conservation Agriculture through 
no-tillage adoption is highlighted a promise strategy to increase SOM quality and increases 
the mineral N content over time (Canisares et al., 2021; Zhang et al., 2020). Thus, 
no-tillage adoption stands out as an alternative to improve NUE. 

In this context, it was observed that in no-till, the improvement of subsoil acidity due to 
gypsum application increased corn root growth, N uptake, grain yield, and NUE (Caires 
et al., 2016). According to the authors, the increased in 19-38 % in corn grain yield, 
depending on the N application rate, is due to the greater absorption of NO3

- in the subsoil 
as a result of the increase in corn root length due to the use of gypsum. All strategies in 
no-till that allow the development of the root system can enhance NUE, improve grain 
yield, and reduce environmental risks due to NO3

- leaching.

Nitrogen origin and energy source for ammonia synthesis

The N2 needed for the Haber–Bosch’s reaction (Equation 1) can be easily obtained from 
the air, and most of the energy costs of NH3 production are due to H2 production from 
fossil fuels and its subsequent combination with N2. According to Liu et al. (2020), about  
72 % of the global production of NH3 is derived from natural gas, 22 % from coal, and  
5 % from fuel oil and naphtha. The greater use of natural gas is explained by its greater 
abundance and lower value compared with other energy matrices. 

It should be noted that the Haber–Bosch process is not sustainable in the long term, as 
fossil fuels are a finite energy source and contribute to GHG emissions. For each ton 
of NH3 produced, 1.9 to 3.8 Mg of CO2 is emitted into the atmosphere, depending on 
the fossil fuel used (Demirhan et al., 2018). Such emissions account for, on average, 
1 % of global anthropogenic CO2 emissions annually (Smith et al., 2020). Two methods 
have been proposed to reduce the environmental impacts caused by NH3 production: (i) 
increase the NUE of N fertilizers and (ii) obtain H2 from renewable processes, such as the 
gasification of modern biomasses (e.g., ethanol, biodiesel, wood methanol) and water 
electrolysis using electricity and sunlight (a process known as green ammonia production) 
(Chehade and Dincer, 2021). Currently, of the 180 million Mg of NH3 produced per year, 
80 % is used for N fertilizer production (Cardoso et al., 2021). The major N fertilizers are 
listed in table 1. Urea is the most widely used N source for meeting crop requirements. 

Ammonia volatilization with urea use

Global demand for N fertilizers amounted to 110 million Mg in 2019 (IFA, 2019), 56 % of 
which was produced in the form of urea, which is the most common fertilizer worldwide 
(Table 2). Urea is widely used for crop nutrition due to its high N concentration (46 %), wide 
market availability, and low production costs (Chien et al., 2009; Cantarella et al., 2018). 
However, when applied to the soil surface, urea is lost mainly through NH3 volatilization, 
representing a loss of more than 60 % of the N applied (Pan et al., 2016), depending on 
the soil and air temperatures (Tasca et al., 2011), soil moisture (Cassim et al., 2021), 
soil pH (Sunderlage and Cook, 2018), soil buffering capacity (Zheng et al., 2018), straw 
mulching on the soil surface (Dick, 1984) and fertilizer rate (Corrêa et al., 2021).

Urea is hydrolyzed by the action of the enzyme urease, as demonstrated in equation 14. 
Because urea hydrolysis consumes H+, there is an increase in pH near fertilizer granules, 
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changing the balance between soil ammonia and ammonium (Equation 15), favoring the 
transformation of NH4

+ to NH3, which is rapidly lost to the atmosphere in the gaseous 
form (Rochette et al., 2009).

When volatilized, the NH3 can be deposited nearby or become airborne, traveling long 
distances and reacting with acids to form ammonium aerosols such as ammonium sulfate 
[(NH4)2SO4] and ammonium bisulfate [(NH4)HSO4] (Galloway et al., 2004). These processes 
exert undesirable effects on the environment. Thus, the deposition of N in terrestrial 
and aquatic ecosystems may lead to soil acidification and water eutrophication, which 
ultimately result in the death of certain plant communities and aquatic animals, such 
as fish and crustaceans (Sutton et al., 2013; Wurtsbaugh et al., 2019). The economic 
costs of freshwater eutrophication in the United States are estimated at USD 2.4 billion 
per year, including loss of lakefront property values (49 %), costs of purchasing bottled 
water due to poor water taste and odor (25 %), recreational losses (24 %), and costs 
of protecting endangered species (2 %) (Dodds et al., 2009; Wurtsbaugh et al., 2019). 

In addition to the formation of ammonium aerosols, volatilized NH3 may react with 
atmospheric HNO3 to form ammonium nitrate, which is one of the main particulate 
matters (fine airborne particles measuring less than 2.5 µm in diameter) that are harmful 
to human health (Paulot and Jacob, 2014). These fine particles have the potential to 
generate lung diseases and cancer (Wyer et al., 2022). Losses due to NH3 volatilization 
and subsequent deposition on the soil also contribute to indirect emissions of N2O, with 
the ability to accelerate global warming and destroy the O3 layer (Houlton et al., 2019). 
Such effects negatively impact climate change and increase exposure to free O3, which 
may cause cough, asthma, chronic respiratory diseases, and cancer in humans (Townsend 
et al., 2003; Erisman et al., 2013). 

Finally, NH3 losses also result in economic losses to farmers. For example, the current 
demand for urea is 61.38 million Mg yr-1 (Table 2). Considering the global mean of NH3 
loss due to volatilization (14 %) estimated by Bouwman et al. (2002), it can be presumed 
that up to 8.6 million Mg of urea is lost every year in the form of gas (NH3), representing 
an economic loss of USD 74.2 billion. 

CO NH H H O  NH CO OHUrease
2 2 2 4 22 2 2� � � � � ��� � �� � � Eq. 14

NH NH              
4 3
� � ���� � Eq. 15

Table 2. List of the most used nitrogen fertilizers with global consumption value

Fertilizers Chemical formula Consumption global Consumption
Tg ano-1 %

Urea CO(NH2)2 61.38 56
Amonium sulfate (NH4)2SO4 3.63 3
Ammonium nitrate NH4NO3 5.39 5
Calcium/magnesium amm. nit.(1) Mix of NH4NO3, CaCO3, MgCO3, CaSO4 3.41 3
anhydrous ammonia NH3 3.96 4
N solutions (UAN) Mix of NH4NO3, CO(NH2)2, H2O 5.39 5
MAP(2) e DAP(3) NH4H2PO4, (NH4)2HPO4 9.68 9
Nitrogen-phosphorus-potassium N-P2O5-K2O 9.13 8
Other sources N NH4Cl, NH4HCO3 8.03 7
Total(4) 110 100

(1) Calcium/magnesium amm. nit.: Calcium/magnesium ammonium nitrate. (2) MAP: monoammonium phosphate. (3) DAP: diammonium phosphate. (4) Demand 
for nitrogen fertilizers in 2019. Source: adapted from Behera et al. (2013).
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Technologies for replacing conventional urea

Nitrogen losses from the agroecosystem are mitigated by using enhanced efficiency 
fertilizers (EEFs) (Lam et al., 2022). Urea has become the main source for the development 
EEFs development, given its wide use and the need to minimize NH3 volatilization losses 
(Guelfi, 2017). Currently, EEFs are classified into three categories according to the 
technologies used for their production, namely, stabilized, slow-release, and controlled-
release (Trenkel, 2010). Stabilized fertilizers can be further subdivided into those containing 
additives for urease inhibition and for nitrification inhibition. 

Urease inhibitors aim to temporarily block urease activity in the soil and decrease the 
rate of urea hydrolysis, thereby allowing more time for N fertilizers to be incorporated 
into the soil by rainfall. Inhibitory additives generally consist of organic molecules or 
metals with affinity for the active sites of urease. Before the organic molecules advent, 
Shaw (1954) investigated the metals action and identified the following sequence of 
urease inhibition power: Ag+ = Hg2+ > Cu2+ > Cd2+ > Co2+ > Ni2+ > Zn2+ = Sn2+ = Mn2+ 
= Pb2+. It should be noted, however, that application of heavy metals (Ag+, Hg2+, Cd2+, 
and Pb2+) to the soil can cause environmental problems. 

Urea treatment with boric acid (H3BO3) may also lead to urease inhibition, given that the 
molecule acts as a competitive inhibitor. Boric acid has a similar conformation to that of 
urea, thereby competing for the same enzymatic sites (Benini et al., 2004). 

In the first studies of organic compounds, the best results were obtained with N-(n-butyl) 
thiophosphoric triamide (NBPT). This compound became the main additive for urease 
inhibition and was marketed worldwide. However, NBPT is not the direct urease inhibitor; 
it must be first oxidized to its analog, N-(n-butyl) phosphoric triamide (NBPTO). Factors 
influencing this conversion are unclear, but the reaction in aerobic soils is fast (occurring 
in minutes or hours). By contrast, it can take days under anaerobic conditions (Watson, 
2000; Cantarella et al., 2018). Following the conversion of NBPT to NBPTO, the O and 
NH2 groups of NBPTO form chemical bonds with urease, trapping the active site of the 
enzyme at three points – two at the Ni atom and one at the oxygen atom (Manunza et al., 
1999). This prevents urea hydrolysis, consequently minimizing NH3 loss by volatilization. 

Nitrification inhibitors are used to decrease N2O losses and NO3
- leaching. The additives 

delay the biological oxidation of NH4
+ to NO3

- in soil by inhibiting Nitrosomonas spp. 
These bacteria are responsible for the conversion of NH4

+ to NO3
- (Qiao et al., 2015), 

as demonstrated in equation 6, representing the nitritation step. On the other hand, 
permanence of N in the form of NH4

+ for longer periods may lead to NH3 volatilization. In 
a meta-analysis published by Wu et al. (2021), urea treated with nitrification inhibitors 
had a 36 % increase in NH3 volatilization loss. For example, in personal data from a 
field experiment conducted in southern Brazil, urea treated with nitrification inhibitor 
increased N losses by NH3 volatilization by 10 % (45 kg ha-1 NH3) and 23 % (85 kg ha-1 NH3)  
in relation to urea (41 and 69 kg ha-1 NH3) for clayey and sandy soils, respectively (Figure 2).  
These results raise important implications regarding the use of nitrification inhibitors as 
a tool to improve NUE and reduce environmental impacts because they contribute to 
the main route of N loss (i.e., volatilization). Globally, the most studied and marketed 
nitrification inhibitors are dicyanamide, 2-chloro-6-(trichloromethyl)pyridine (Nitrapyrin), 
and 3,4-dimethylpyrazole phosphate (Taggert et al., 2021).

Slow-release fertilizers are products that have reduced dissolution rates in soil. Such 
properties can be obtained by reducing the solubility of N fractions that compose the 
products (Trenkel, 2010). For this, urea is condensed with aldehydes in a reactor under 
controlled conditions of pH, temperature, molar ratio, and reaction time to form polymer 
chains with C molecules of crotonaldehyde, isobutyraldehyde, or formaldehyde (Yamamoto 
et al., 2016; Guelfi, 2017). Some of the best-known slow-release N fertilizers include urea 
formaldehyde, urea crotonaldehyde, and urea isobutyraldehyde. 
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For urea formaldehyde, differences in the degree of polymerization (insolubility) and 
molecular weight (chain length) influence N release rates. Nitrogen release rate from 
urea isobutyraldehyde and urea crotonaldehyde depends on differences in particle size, 
given these products have a defined chemical composition. However, the nitrogen rate of 
release from these fertilizers, even if slow, may vary according to the decomposition and 
hydrolysis of the urea–aldehyde product in the presence of CO2 and NH4

+, soil microbial 
activity, and soil temperature, pH, and moisture (Jahns et al., 2003). 

Controlled-release fertilizers have coated granules that function as a barrier to prevent 
direct contact of N with its surroundings. This allows N release to be controlled and 
synchronized according to crop demands, resulting in reduced losses by volatilization 
and leaching (Cahill et al., 2010; Azeem et al., 2014). This class of fertilizer can be 
divided into three categories according to the coating material: (i) fertilizers coated 
with elemental sulfur (S0), (ii) fertilizers coated with elemental sulfur and polymers, and 
(iii) fertilizers coated with polymers only (Guelfi, 2017). Figure 3 shows the scanning 
electron micrographs of an uncoated urea granule and the three types of controlled-
release fertilizers. 

Elemental sulfur was one of the first materials used for coating, given it is relatively 
inexpensive and acts as a plant nutrient (Timilsena et al., 2014). Nitrogen release from 
S0-coated granules depends on the activity of microorganisms that oxidize S0, which, in 
turn, depends on pH, moisture, and temperature. For these reasons, some researchers do 
not consider S0-coated urea a controlled-release fertilizer; rather, they consider it a slow-
release product (Trenkel, 2010). Furthermore, S0 coating is not uniform, and cracks are 
commonly observed. To circumvent these problems and improve the controlled release 
of N, it is common to add a layer of polymers to create a product known and patented 
as hybrid fertilizer (S0 + polymers) (Detrick, 1997). Despite the improvements afforded 
by additional polymer layers, problems associated with coating uniformity still persist. 
Thus, the most advanced technology of controlled-release fertilizers involves the use of 
one or several layers of polymers to coat granules without S0. 

The release mechanism of polymer-coated nutrients, which is sensitive to temperature 
and moisture conditions, can be described in three stages: (i) latency period, (ii) constant 
release, and (iii) decay period (Shaviv et al., 2003). In the first stage, water present in 

Figure 2. Cumulative volatilization of NH3-N after broadcasting applications of the urea (Ur) and 
Ur + nitrification inhibitor in corn for: Clayey soil at a rate of 200 kg ha-1 of N (a) and sand soil at 
a rate of 150 kg ha-1 of N (b). Results were submitted to no-linear regression analysis using the 
logistic model Y=α/1+exp[-(time-β)/γ]. Data with overlapping vertical bars with 95 % confidence 
interval in the curve.
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the soil, mainly in the form of vapor, penetrates the coating up to the granule core, 
swelling the granule, and a small fraction of the fertilizer in the form of urea is dissolved. 
Subsequently, in the second stage, as water continues to penetrate, more solid fertilizer is 
dissolved, and the internal pressure increases, allowing the nutrient to be slowly released 
through membrane diffusion. However, if the internal pressure exceeds the limit value, 
the coat is ruptured, providing immediate release of the nutrient. If this does not occur, 
N release reaches the third stage, when most of the fertilizer has already been dissolved 
and released, reducing diffusion (Lawrencia et al., 2021).

Polymer coatings, such as polyurethane (Ni et al., 2011), polyethylene (Wei et al., 
2017), polystyrene (Yang et al., 2012), polyolefin (Xu et al., 2013), polyvinyl chloride 
(Hanafi et al., 2000), polyacetate (Niu and Li, 2012), and polyacrylamide (Liang et al., 
2009), may be of synthetic origin. Coatings, such as starch (Jin et al., 2012), pulp (Pang 
et al., 2019), lignin (Chen et al., 2020), chitosan (Chiaregato et al., 2022), alginate 
(Llive et al., 2020), wheat gluten (Enríquez et al., 2012), and natural rubber (Riyajan 
et al., 2012), may also be of natural origin. Although synthetic polymers have lower 
costs and offer more controlled release than organic polymers (Timilsena et al., 2014), 
their residual accumulation in soil can lead to a new form of pollution, as they are 
microplastic sources. For these reasons, research on controlled-release fertilizers has 
aimed to improve the control mechanisms and costs of organic polymers, given that 
they are biodegradable. 

Importance of EEF characterization

With the introduction of EEFs to the N fertilizer market, the characterization of N-fertilizer 
sources became an important tool for understanding the mechanism of enhanced 
efficiency technologies. However, there are few scientific papers on this topic. New 
organic molecules for urease or nitrification inhibition are constantly launched in the 
market to increase NUE. For instance, a new stabilization agent consisting of two active 
ingredients, Duromide + NBPT, reduced NH3 losses by 33 % compared with NBPT 
alone (Cassim et al., 2021). 1,2,3-Triazole seems to have better performance than the 
conventional nitrification inhibitor 3,4-dimethylpyrazole phosphate (DMPP) in retaining 
NH4

+-N (Taggert et al., 2021).

Figure 3. Electron micrographs and coating material thickness of the controlled-release fertilizer 
categories. Conventional uncoated urea (a), urea coated only with S0 (b), S0 and polymer coated 
urea (P1 S0 coating and P2 polymer coating) (c) and urea coated with polymer only (d).
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Research on slow-release fertilizers such as urea formaldehyde resulted in the identification 
of methyleneureas (methyleneurea, methylenediurea, and polymethylene), which are 
correlated with the polymerization degree (insolubility) and molecular weight (chain 
length) of the fertilizer (Alexander and Helm, 1990; Guelfi, 2017). These properties 
influence N-release duration and, consequently, crop yields. X-ray diffraction of urea 
formaldehyde (Figure 4) revealed the presence of methylenediurea, explaining the 
intermediate molecular weight and degree of polymerization of the fertilizer, which results 
in slower release than conventional urea. Notably, this slow-release fertilizer contains 
urea unreacted with formaldehyde (Figure 4) so that part of the N can become readily 
available to plants. Despite this fact, no yield gains were obtained with the application of 
urea formaldehyde containing 70 % of slow-release compounds, while products containing 
55–60 % led to significant yield gains (Cassim et al., 2020). 

Nitrogen release from controlled-release fertilizers is influenced by coating composition 
and thickness. Azeem et al. (2016) observed that the duration of N release from polymer-
coated urea increased with increasing coating thickness, and Gao et al. (2015) found 
that the type of coating used, whether polymer or elemental sulfur, influenced the 
behavior of the N-release curve. This is because the performance of S0 coating depends 
on coating uniformity (lack of cracks) and the activity of microorganisms responsible 
for S0 oxidation. Polymers, on the other hand, allow controlled N diffusion through their 
permeable membranes; thus, the release of N is influenced by the amount and thickness 
of the coating, resulting in better synchronization of N release with plant requirements. 

Nitrogen fertilizers characterization is important not only for agronomic performance but 
also for the monitoring and creation of regulations for product specification, especially with 
regard to EEFs. Many commercial EEFs do not disclose information on the composition or 
thickness of the coating material. Minato et al. (2020) identified using scanning electron 
microscopy that some controlled-release products lack granule coating, leading to the 
release of 98 % of applied N within 24 h. As a result, the rate of NH3 volatilization of such 
products is similar to that of conventional urea. Characterization of N sources available 
on the market is both a challenge and a necessity. 

Figure 4. X-ray diffraction of the urea formaldehyde (UF) for enhanced efficiency nitrogen fertilizer 
characterization.
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Ammoniacal/nitric fertilizers: conventional sources to decrease ammonia 
volatilization losses 

As demonstrated by meta-analyses conducted by Silva et al. (2017) and Zhang et al. 
(2019), EEFs developed by the N fertilizer industry reduce NH3 volatilization losses by 
39 to 52 % compared with conventional urea. On the other hand, little to no loss occurs 
when ammoniacal/nitric fertilizers, such as ammonium sulfate and ammonium nitrate 
(Table 3), are applied to the soil surface. Non-amide N sources dissociate into stable ionic 
forms, unlike urea, which is enzymatically hydrolyzed to ammoniacal N, a process that 
results in an increase in pH around granules and later in NH3 volatilization. 

However, in alkaline and calcareous soils with pH >7 or soils that have just received 
high lime rates, any N fertilizer containing N as ammonia is subject to NH3 volatilization 
losses (Table 3). The influence of calcium carbonate and soil pH (Equations 16, 17 and 
18) on N sources containing ammonia is described by Havlin et al. (2017).

Although soil pH influences the efficiency of ammonia sources, the occurrence of alkaline 
soils in large food-producing countries such as Brazil is unusual, given that, because 
of its tropical climate, more than 70 % of the national territory is formed by acidic soils 

NH SO CaCO H O NH HCO OH CaSO4 2 4 3 2 4 3 42 2 2 2� � � � � � � �� � � Eq. 16

NH HCO NH CO H O4 3 3 2 2
� �� � � � � Eq. 17

NH OH NH H O4 3 2� � � �� Eq. 18

Table 3. Volatilization losses of NH3 (%) to ammonium sulfate and ammonium nitrate in function of the soil pH

Source N Rates of N Soil pH Volatilization 
losses of NH3

Authors

kg ha-1 %
Ammonium sulfate (AS) 200 4.5 4 Cassim et al. (2022)
AS 60 5.4(1) 3 Minato et al. (2020)
AS 90, 180, 270 5.4(2) 2; 3; 7 Corrêa et al. (2021)
AS 150 4.8(2) 2 Fontoura and Bayer (2010)
AS 280 5.3(2) 2 Fenilli et al. (2007)
AS 150 5.9(1) 3 Santos et al. (2020)
AS 168 6.7(1) 10 Del Moro et al. (2017)
AS 100 8.9(1) 34 Schwenke et al. (2014)
AS 120 10.6(1) 54 Rao and Batra (1983)
Ammonium nitrate (AN) 200 4.5 5 Cassim et al. (2022)
AN 100 5.5(2) 1 Otto et al. (2017)
AN 100 5.1(2) 0.2 Cantarella et al. (2008)
AN 100 5.7(2) 0.1 Faria et al. (2013)
AN 90, 180, 270 5.4(2) 2; 3, 4 Corrêa et al. (2021)
AN 150 4.8(2) 1 Fontoura and Bayer (2010)
AN 150 5.7(2) 0.4 Viero et al. (2014)
AN 100 6.2(1) 8 Lara Cabezas et al. (1997)
AN 550 7.6(1) 18 Fenn and Kissel (1973)
AN 120 10.6(1) 54 Rao and Batra (1983)

(1) pH determined in water; and (2) pH determined in saline solution.
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(Crusciol et al., 2017). A global meta-analysis of 824 observations between 1971 and 
2016 conducted by Pan et al. (2016) showed that ammonium nitrate and ammonium 
sulfate were the two most effective fertilizers in reducing NH3 volatilization losses by 
up to 88 and 79 % compared with urea, respectively. Adoption of ammoniacal/nitric 
sources as opposed to EEFs by farmers is perhaps hindered by the low N concentration 
of ammonium sulfate (21 % N) and restrictions on the purchase of ammonium nitrate 
by the national armed forces, as the material can be used to produce explosives and 
may detonate during storage. 

Ammonium nitrate is not considered flammable or combustible. However, factors such 
as high temperatures under confinement (260 to 300 °C) and contamination by organic 
or inorganic materials such as chlorides or powdered metals can lead to explosive 
detonation through the production of N2O, which rapidly decomposes into N and oxygen 
(O2) (Chaturvedi and Dave, 2013; Laboureur et al., 2016). For this reason, some N fertilizer 
companies have used calcium and magnesium carbonates to react with ammonium nitrate 
as demonstrated by equations 19 and 20, which can reduce heat release in an emergency 
situation (Klimova et al., 2011; Poplawski et al., 2016). Ammonia, one of the products of 
these reactions, can inhibit the undesirable exothermic process of ammonium nitrate, 
thereby improving safety (Poplawski et al., 2016). In figure 5, the X-ray diffractogram 
shows the presence of dolomite, calcium carbonate, and magnesium in a commercial 
fertilizer based on ammonium nitrate and calcium sulfate. 

Figure 5. X-ray diffraction of the ammonium nitrate + calcium sulfate for conventional nitrogen 
fertilizers characterization.
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FINAL CONSIDERATIONS AND FUTURE PROSPECTS
The growing demand for food, fuel, and energy driven by world population expansion 
will further increase the entry of N into agricultural soil and by consequence into the 
ecosystems, leading to more global N pollution. Besides adopting adequate management 
practices to reduce N losses and improve the uptake of N-fertilizers by plants, other 
strategies might be required to reduce the potential pollution caused by accelerated 
N consumption. This can be the case, for example, in the creation of environmental 
regulations forcing the industry to couple technologies in N fertilizers to reduce losses. 
These environmental regulations can be demonstrated in the large-scale adoption of 
urease inhibitors to mitigate gaseous NH3 losses and their detrimental effects on water 
and air. In this sense, on February 1st, 2020, the German government mandated that 
all urea fertilizers used in the country should be incorporated into the soil or treated 
with urease inhibitors. 

Because urea incorporation requires irrigation or mechanical practices that disrupt the 
no-till, surface application of urea has become the predominant practice in agricultural 
production systems. Soon, industries and researchers in the urea-based N fertilizer sector 
will be challenged to develop new molecules or mixtures of stabilizing agents, cheaper 
biodegradable coatings, and better controlled-release mechanisms, aiming at reducing 
environmental contamination by microplastic as well as modifying urea formaldehyde 
formulations to granules. 

For companies that commercialize ammonium sulfate and ammonium nitrate, the great 
challenge will be to convince farmers to use less concentrated sources of N, increase 
the current supply of nitrate and ammonium sulfate through the implementation of 
new factories, and, finally, seek public policies that facilitate the purchase, storage, and 
transport of ammonium nitrate, given it can be used for the manufacture of explosives 
and the inherent explosion risk associated with this N source when stored.
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