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The year 2022 marked the 200th anniversary of the first appearance of the Navier–Stokes equation, a landmark
in Fluid Dynamics introduced by Claude-Louis Navier in 1822. This equation revolutionized the understanding
of fluid motion by incorporating viscosity and friction into the equations, expanding their applicability beyond
idealized fluids. In this manuscript, we explore the historical development of the Navier–Stokes equation and
its profound impact on Fluid Dynamics over the past two centuries. From Navier’s initial insights to George
Stokes’ experimental validations and subsequent contributions by other scientists, we trace the evolution of this
equation. We also delve into its practical applications, including its role in the development of Computational
Fluid Dynamics. The Navier–Stokes equation has played a pivotal role in advancing our understanding of fluid
behavior, making it a cornerstone of modern science and engineering.
Keywords: Navier–Stokes equation, friction of fluids, viscosity, eddy viscosity, viscous flow, fluid dynamics,
computational fluid dynamics.

1. Introduction

The first derivations of the Navier–Stokes equation
appeared in two memoirs by Claude-Louis Navier: Sur
les lois des mouvements des fluides, en ayant égard à
l’adhésion des molecules [1], published in the Annales
de Chimie et de Physique for the year of 1821 (the
printed version actually appeared in 1822), here referred
to as the 1st memoir; and Sur Les Lois du Mouvement
des Fluides [2], which appeared in the Mémoires de
L’Académie Royale des Sciences de L’Institut de France
for the year of 1823 (actually appeared in printing in
1827), here referred to as the 2nd memoir. Nonetheless,
according to the records, both were read at L’Académie
on March 18th, 1822, and this was considered the year
that marks the appearance of the equation, when it was
first publicly announced. These publications formally
introduced, for the first time, friction in the equations of
fluid motion. Up until then, the equations of motion had
been limited to perfect fluids, following the publication
of the well-known Euler’s equations for non-viscous
fluids in 1755.

Navier’s inclination for scholarship and his back-
ground in higher analysis at the École Polytechnique
and in practical engineering at the École des Ponts
et Chaussées put him in the ideal position to make
significant contributions to the science of fluid flow by
realizing that fluid friction was the main cause for the
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deviation of experiments from theory. Reference [3] gives
a thorough discussion of Navier’s development of the
Navier–Stokes equation contained in both memoirs. In
his developments, Navier begins by adopting Laplace’s
molecular program that considers bodies in general as
made up of particles which are close to each other and
which act on each other by means of two opposing
forces – one of attraction and one of repulsion – which,
when in a state of equilibrium, cancel each other out.
When the fluid moves, and all the molecules, being
carried away by a common motion, preserve their
respective situations, the state of these molecules does
not change, and no new action is established in the
interior of the fluid. However, when there is difference
in velocities between two molecules, the repulsive force
between these two molecules will change. According to
Navier, a quantity given by the difference in velocities
between the two molecules, multiplied by a function of
the distance of these two molecules (which decreases very
fast as the distance increases), and by a constant relative
to the ‘adherence of the fluid molecules’ (viscosity), gives
the repulsive force between the two molecules (force that
will be of attraction if this quantity is negative).

After having established the nature of the molecular
forces for fluids in motion, Navier makes an analogy
between the motion of viscous fluids and the motion
of elastic solids, as developed in the 1st memoir, to
obtain, for the first time, the incompressible form of the
Navier–Stokes equation as it is known today. Because
of contradictory experimental results, Navier’s main
concern thereafter was to know what would be the
appropriate boundary conditions to be satisfied at solid
boundaries, for cases where the molecules of the walls
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exert a particular action upon those of the fluid. He
then, in the 2nd memoir, by applying Lagrange’s method
of moments, obtains again the Navier–Stokes equation,
but with new boundary conditions.

2. What is the Navier–Stokes Equation?

The Navier–Stokes equation is a nonlinear partial dif-
ferential equation, which governs the motion of real
viscous fluids and can be seen as Newton’s second law
of motion for fluids. It describes the physics of many
flow phenomena of scientific and engineering interest,
and it may be used to model the weather, air and
ocean currents, pollution dispersion in these fluid media,
water flow in tubes, air flow over a wing, blood flow
through arteries, etc. It can help engineers to design
power stations, aircrafts, cars, fluid flow machines such
as pumps, turbines, ventilators, and many other types
of equipment.

The Incompressible Navier–Stokes Equation reads

ρ

(
∂u

∂t
+ (u · ∇)u︸ ︷︷ ︸

)
acceleration

of the fluid particle
of velocity u

(local + convective acceleration)

= ρg︸︷︷︸
gravitaional
force term

−∇p︸ ︷︷ ︸
pressure

force term

+ µ∇2u︸ ︷︷ ︸
viscous

force term

,

where µ is viscosity, ρ is density, and quantities in bold
are vectors.

The continuity equation ∇ · u = 0, together with
the three components of the Navier–Stokes equation,
form a system of equations necessary to obtain the three
velocity components and the pressure.

The boundary condition that accompanies this equa-
tion is u = U on solid boundaries, where U is the
boundary velocity.

The Navier–Stokes equation is an evolution of the
Euler’s equation. This equation governs the motion of
the perfect non viscous fluid and as such can be seen
as the Navier–Stokes equation without the viscous term
µ∇2u.

At the beginning of the nineteenth century, the knowl-
edge on the phenomena of fluid resistance and flow
retardation was empirical. This was also the case of
Navier, who even was responsible for the preparation of
a revised edition of Belidor’s Architecture hydraulique,
then a very popular practical book among hydraulic
engineers. Nonetheless, it was Navier who first tried to
insert new terms in Euler’s hydrodynamic equations,
by applying Laplace’s new molecular theory to model
viscosity.

In contrast to the empirical approaches then in use,
these equations were considered too complex for not
offering ready answers to practical problems faced by
engineers at the time. Besides, the mathematical con-
temporary capability was not prepared to tackle these
equations. Indeed, they were among the first partial
differential equations ever to have been written, and
they involved the non-linearity term (u · ∇)u that has
troubled solutions to this day. Even if someone had been
willing to modify Euler’s equations, he would have lacked
clues about the structure of the new terms and also
because the concept of internal fluid friction was as yet
immature [4].

3. The First Five Births of The
Navier–Stokes Equation

The title of this section was borrowed from Darrigol [4],
who in this publication presented a thorough an excel-
lent account on the first proposals of the Navier–Stokes
equation, contextualized with the historical develop-
ments after and before the appearance of this equation.

Fluid friction forces associated with viscosity were not
suitably modelled until well into the nineteenth century.
The inclusion of viscous forces into the equations of
fluid motion has been first proposed by Claude-Louis
Navier in 1822 [1]. The modern theory of elasticity may
be considered to have its birth in the same publication,
when Navier first gave the equations for the equilibrium
and motion of an (isotropic, one-constant) elastic solid.
By having proposed what is considered to be the first
modern theory of elasticity, Navier soon perceived that
these equations could be extended to other continuous
media and taking as a starting point the equations for
elastic solids, he wrote the equation for the motion
of viscous fluids, substituting fluid particle velocities
for elastic solid displacements, and the fluid viscosity
constant (called ‘adherence constant’ by Navier) for the
elastic solid constant.

Thereafter, more or less independently and by using
different arguments, the viscous equations were re-
obtained by Augustin Cauchy, Siméon Poisson, and
Adhémar Barré de Saint-Venant. As noted by Dar-
rigol [4], each new discoverer either ignored or denigrated
his predecessors’ contribution. Each had his own way to
justify the equation.

As for the involvement of Stokes with the equation of
motion for viscous flows is concerned, it began in 1845
when Stokes publishes “On the theories of the internal
friction of fluids in motion” [5]. Similar to the approaches
of Navier, Stokes used a continuity argument to justify
the same equation of motion for elastic solids as for
viscous fluids. A practical motivation was that Stokes
seems to have realized that the viscosity of the air flowing
around the pendulum could play a role in making a
pendulum behave differently than the ideal pendulum in
a vacuum. By applying methods similar to Cauchy’s and
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Poisson’s, Stokes arrived at the Navier–Stokes equation
by saying that this equation and the equation of con-
tinuity “[. . .] are applicable to the determination of the
motion of water in pipes and canals, to the calculation
of friction on the motions of tides and waves, and such
questions” [5, p. 93].

Since many investigators had corroborated the equa-
tion of motion for viscous flows as developed by Navier,
one may wonder why Stokes became also associated with
this equation. The answer might be that he made exten-
sive comparisons of theory and experiments of different
researchers with cylindrical rods, spheres, spheres at the
end of long and short rods, oscillating disks, long and
short pendula oscillating in air and water, etc. Therefore,
differently from the other authors of the Navier–Stokes
equation, and similarly to Navier, Stokes had a very clear
intention on the practicality of his efforts by confronting
theory with experiments, and this might be a reason why
he and Navier became associated with the equation of
motion for viscous flows.

4. The Solutions of the Navier–Stokes
Equation

As far as the solutions of the Navier–Stokes equation
(referred hereafter simply as the N–S equation) is con-
cerned, firstly, it should be pointed out that the N–S
equation as posed by their first authors, are strictly only
valid for slow motions in capillaries, meaning laminar
flows. These first derivations did not intend this equation
to be used for the most encountered turbulent flows.
This is a serious restriction because most flows of
interest are generally turbulent. Nonetheless, the quest
for the solutions of the N–S equation has fostered the
development of very creative mathematical methods,
which have allowed a deeper understanding of laminar
flows, and have sprung the development of numerical
solutions for more complex laminar flows and turbulent
flows in general.

4.1. Exact solutions

The exact solutions of the N–S equation may be divided
into two main categories. The first category, include
solutions for which the nonlinear term (u · ∇)u = 0,
owing to the simple nature of the flow. Flows that fall
into this category are the Couette flow (from which the
lubrication theory is developed), the Poiseuille flow (flow
in a tube of uniform cross section), the flow between
rotating cylinders, Stokes’ first and second problems,
and the pulsating flow between parallel surfaces.

The second category of exact solutions is that for
which the nonlinear convective term is not identi-
cally zero. Examples of these types of flows include
stagnation-point flow, the flow in convergent and diver-
gent channels, and the flow over a porous wall.

4.2. Low-Reynolds-number solutions to the
Navier–Stokes equation – Stokes equations

Since the Reynolds number (Re = ρUL
µ , where L is the

characteristic length, U is a characteristic velocity, and
the other quantities have been already defined) may be
interpreted as the ratio of the inertia forces of the fluid to
the viscous forces, flows at very small Reynolds numbers
amounts to the condition of negligible inertia forces. This
implies that the convective inertia term (u · ∇)u in the
N–S equation is assumed to be small compared with the
viscous term, resulting in the Stokes equations.

A famous result obtained from the Stokes equations is
the famous Stokes’ drag law. Here it is found that there
is a connection between force and viscosity for a free-
falling sphere in a viscous fluid that is used in the falling-
sphere viscometer, which is a device that measures the
viscosity of a liquid by measuring the time required for
a spherical ball to fall a certain distance under gravity
through a tube filled with the fluid whose viscosity is to
be determined.

4.3. The laminar boundary layer

The boundary layer is a thin region close to the surface
of a body where viscous effects are significant. The
boundary layer is formed in internal flows, such as that
at the inlet of a tube, and in external flows, such as the
flow over an aircraft wing.

In the case of an airfoil, the boundary layer at first
flows smoothly over the streamlined shape of the airfoil,
and the flow in the boundary layer is laminar. As the
flow approaches the center of the wing, it begins to lose
speed due to friction and the boundary layer becomes
thicker and turbulent.

No solution does exist for the laminar boundary layer
on airfoil of arbitrary shape. Nonetheless, it is possible
to obtain a solution from a simplified form of the N–S
equation for a flat plate subjected to a uniform flow –
indeed, an oversimplification to a complex problem.

5. Reynolds Averaged Navier–Stokes
Equations

As we just saw, the N–S equation affords no solution
to the more complex laminar flows, and as mentioned
earlier, it is not applicable in its current form to
turbulent flows, where lies most flows of interest.

Similar to viscous stresses, the turbulent velocity
fluctuations also produce stresses, the so-called Reynolds
stresses, which are the mean forces (per unit area)
imposed on the mean flow by turbulent fluctuations.

The Reynolds-averaged Navier–Stokes equations
(RANS equations) are an extension of the regular
N–S equation, applicable to turbulent flows. They
are obtained by means of the so-called Reynolds
decomposition, whereby the instantaneous velocities are

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0398 Revista Brasileira de Ensino de Física, vol. 46, e20230398, 2024



e20230398-4 200 years of the Navier–Stokes equation

Figure 1: Pressure distribution around an aircraft airfoil obtained by a CFD simulation2.

decomposed into their time-averaged and fluctuating
quantities.

The RANS equations have the same structure of
the laminar N–S equation, with the difference that
the velocities in the RANS equations are represented
by time-averaged values. However, an additional term
appears in the RANS equations, which represents the
effect of turbulence. This term introduces six unknown
terms associated with the velocities fluctuations, but the
matching equations are not available to close the system.
Therefore, this term needs to be modelled in order to
close the system of equations. Several approaches have
evolved for this purpose.

Computational Fluid Dynamics (CFD) is a branch of
fluid mechanics that applies numerical analysis and data
structures to analyse and solve problems that involve
turbulence. Computers programs are used to perform
the calculations required to simulate the free-stream
flow and the interaction of the fluid (liquids and gases)
with surfaces defined by boundary conditions. Thanks to
high-speed computers, solutions can be achieved for the
largest and most complex problems. Figure 1 shows the
pressure distribution around an aircraft airfoil obtained
by a CFD simulation.

CFD applies numerical simulation of turbulence. This
can be essentially done by Direct Numerical Simulation
(DNS) and by Large Eddy Simulation (LES). DNS
explicitly resolves and captures all scales of turbulence,
including the smallest ones. The principal idea behind
LES is to reduce the computational cost by ignoring
the smallest length scales, which are the most compu-
tationally expensive to resolve. For most engineering
applications, it is unnecessary to resolve the details of

2 Used with the permission of Ahmed Al Makky, consultant for
the CFD industry, at his website: ‘Computational Fluid Dynamics
is the Future’, at https://cfd2012.com/wings.html

the turbulent fluctuations, and, therefore, the RANS
simulation is preferable.

The application of the RANS equations requires the
adoption of a turbulence model, which is a computational
procedure to close the system of mean flow RANS
equations. Turbulence models allow the calculation of
the mean flow without first calculating the full time-
dependent flow field. A turbulence model provides
expressions for the Reynolds stresses, and from an
engineering point of view, it must be simple, accurate
and economical to run.

6. Impact of the Navier–Stokes Equation
on the Evolution of Fluid Dynamics

It soon became clear right after the first appearance
of the N–S equation that for this equation to become
more useful, it had to address the phenomenon of
turbulence. It was Osborne Reynolds, from whom the
popular Reynolds number borrows the name, who in
1895 proposed the inclusion of turbulence by averaging
of the N–S equation over the turbulent fluctuations,
which resulted in the Reynolds-averaged Navier–Stokes
equations, discussed earlier.

The next major advance was turbulence modelling,
which was initially done by ad-hoc procedures. Such
was the case of the mixing length concept introduced
by Prandtl in 1925. This is the simplest turbulence
model, and still used in RANS simulations by CFD.
The mixing length concept evolved from the concept
of eddy viscosity, which, similar to molecular viscosity,
is a coefficient of internal friction due to turbulent
velocity fluctuations. Boussinesq was the first to publish
expressions for eddy viscosity in 1877 in his work “Essai
sur la Théorie des Eaux Courantes”, building upon
earlier ideas in turbulence developed by Saint-Venant [6].
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In 1933 Nikuradse [7] published “Laws of flow in rough
pipes”, which was based on his carefully measurements
of friction that a turbulent flow experiences as it flows
through a rough pipe. These measurements were inter-
polated by Colebrook which resulted in the formula that
bears his name and is the accepted design formula for
turbulent friction. Its plot in 1944 by Moody resulted
in the well-known Moody chart for pipe friction, which
is considered the most famous useful figure in Fluid
Dynamics.

As far as applications are concerned, the N–S equation
in its original form certainly has limitations in its
applicability, nonetheless, since its first appearance it has
fostered an enormous amount of work to understand, to
model and to predict fluid behavior, which has decisively
contributed to the evolution of Fluid Dynamics.

7. Conclusions

The 200 years of the Navier–Stokes equation’s existence
have left an indelible mark on the field of Fluid Dynam-
ics. From its inception in the early 19th century to its
continued relevance in the 21st century, this equation
has been instrumental in expanding our understand-
ing of fluid motion. The contributions of Claude-Louis
Navier, George Stokes, and subsequent scientists have
solidified its place as a fundamental pillar in science and
engineering.

The equation’s evolution from its original form to the
Reynolds-averaged Navier–Stokes equations and beyond
has allowed us to tackle a wide range of fluid flow
problems, from laminar to turbulent flows. Its appli-
cation in Computational Fluid Dynamics (CFD) has
opened doors to simulating complex fluid behaviors,
aiding in the design of aircraft, vehicles, power stations,
and various fluid flow machines.

While the Navier–Stokes equation has its limitations,
particularly in modeling turbulent flows, it has been
a catalyst for research and innovation. The quest to
understand and predict fluid behavior has led to the
development of turbulence models, numerical methods,
and experimental techniques. This ongoing pursuit con-
tinues to shape the future of Fluid Dynamics.

As we celebrate the bicentennial of this equation, we
acknowledge its enduring significance and the countless
contributions it has inspired. From fundamental research
to practical applications, the Navier–Stokes equation
remains a testament to the enduring power of scientific
inquiry and its impact on our understanding of the
natural world.

Biographical Sketches

(More detailed biographies of these personalities can be
accessed at https://mathshistory.st-andrews.ac.uk/.)

Bust of Claude-Louis Marie Henri Navier at the École
des Ponts et Chaussées, Paris (10 February 1785–21
August 1836).
Claude-Louis Navier, initially educated at the École
Polytechnique and later at the École des Ponts et
Chaussées, represented a novel approach to engineering,
amalgamating the analytical proficiency acquired at
the Polytechnique with the pragmatic orientation of
the Écoles d’application. His theoretical investigations
and instructional endeavours played a pivotal role in
rejuvenating the field of mechanics, aligning it more
effectively with the practical demands of engineering.
In 1824, Navier gained entry into the French Academy
of Science. By 1830, he assumed a professorial role at
the École Nationale des Ponts et Chaussées, and the
subsequent year saw him taking over from Cauchy as the
professor of calculus and mechanics at the Polytechnique.

Sir George Gabriel Stokes-circa 1860 Pembroke College,
Cambridge (13 August 1819–1 February 1903).
George Stokes devoted his entire professional career to
the University of Cambridge, where he held the position
of Lucasian Professor of Mathematics from 1849 until
his passing in 1903. Renowned as a physicist, Stokes
made groundbreaking contributions to Fluid Mechanics,
notably co-formulating the Navier–Stokes equations. In
recognition of his accomplishments, Stokes was conferred
with a baronetcy (hereditary knighthood) by the British
monarch in 1889. In 1893, he was honored with the Royal
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Society’s Copley Medal, considered the foremost scien-
tific accolade of the time. Beyond his academic pursuits,
Stokes represented Cambridge University in the British
House of Commons from 1887 to 1892, aligning himself
with the Conservative party. Additionally, he assumed
the role of president of the Royal Society from 1885
to 1890 and briefly served as the Master of Pembroke
College, Cambridge.
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