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Evaluation of PCA 
with variable selection for 
cluster typological domains
Abstract

The modeling of mineral deposits has been improved over the years with the 
incorporation of mineralogical and metallurgical information obtained from drilling 
samples that make up the pillars for the construction of resource models. However, 
sampling data is being made available in large quantities, causing current databases 
to grow exponentially. The use of machine learning (ML) algorithms has been applied 
to deal with multidimensional data problems. Principal component analysis (PCA) is 
a multivariate analysis (MA) technique whose aim is to reduce the dimension of mul-
tivariate data. Studies show that results obtained with the reduction of variables were 
satisfactory in different areas of activity. The purpose of this article is to test variable 
selection criteria using PCA for geometallurgical data and to check the feasibility of 
the technique for simplifying variable types and defining typological domains.

Keywords: multivariate analysis, variable selection, geometallurgy.

http://dx.doi.org/10.1590/0370-44672023770071

Mining

Evaluation of process performance 
within mining operations requires the 
geostatistical modeling of many related 
variables. These variables are a combina-
tion of grades and other rock properties, 
which together provide a characterization 
of the deposit that is necessary for optimiz-
ing plant design, blending and stockpile 
planning (Barnett, et al., 2012). 

The process of deposit spatial mod-
elling is usually carried out after sam-
pling and identification of homogeneous 
geological bodies (Braga, 2016). These 
are known in geostatistics as stationary 
domains. However, the identification of 
these domains is not always an easy task 
because the information available in geo-
science databases requires the analysis of 
a great number of attributes, which may 
contribute little for the discrimination of 
the evaluated individual elements, in ad-
dition to causing the analysis and data in-
terpretation to become more complex. In 

general, a small amount of these variables 
contains the most relevant information, 
whereas the others do not add much to 
the interpretation of the results.

Many methods are possible for 
deciding which variables to reject, but in 
practice experience and intuition often 
play a role in the selection (Jolliffe, 1972). 
According to Milligan (1980), a poor 
choice of variables for grouping domains 
leads to inaccurate assignments of obser-
vations and the formation of clusters.

The use of machine learning (ML) 
algorithms is an interesting alternative 
for multidimensional data problems in 
deposit modeling. Different approaches 
have been proposed to select the most 
discriminating variables, such as Principal 
Component Analysis, Kernel Principal 
Component Analysis, Multidimensional 
Scaling etc. Among the numerous meth-
ods, principal component analysis (PCA), 
linear discriminant analysis (LDA) and the 

maximum margin criterion (MMC) are 
the most famous due to their simplicity 
and effectiveness (Hu, 2021).

The study of variable selection prob-
lems dates back more than 50 years (Roy, 
1958, Efroymson, 1960; Beale et al., 1967 
apud Brusco, 2014) and continues to be a 
relevant topic with recent contributions. In 
mining, some current work is being done 
using PCA associated with other machine 
learning techniques: to reduce geometal-
lurgical variables in neural network mod-
els (Mu, 2023); to identify variables that 
best correlate in geometallurgical studies 
in a gold mine using self-organizing map 
clustering (Costa, 2023); in models for 
predicting water inrush in coal mines 
using neural networks (DBN) in order 
to reduce the long training time (Zhang, 
2022); in work on the spatial autocorrela-
tion of geotechnical information to reduce 
the increasing dimensionality of the data 
set caused by the EDF-Euclidean distance 
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The database used comes from an 
igneous deposit with complex geology 
formed by the overlapping of various li-

thologies and with mineral occurrences of 
phosphate, titanium, rare earth elements 
and niobium. The chemical database 

is the most complete with over 40,000 
samples, but only 4% of this database is 
isotopic when considering all the attributes 

field features (kim et al., 2023); to reduce 
the dimensionality of hydrochemical data 
and define the water classification model 
using clustering techniques at a gold mine 
in China (Liu et al., 2019); in studies of 
acid drainage from a galena mine in Japan, 
identifying the most relevant geochemical 
components and isotopes for determining 
water quality (Tomiyama, 2019); to reduce 
the multidimensionality of compositional 
and non-compositional data using the 
scren plots technique in geometallurgical 
studies in Paracatu (Bhuiyan, 2019); to 
differentiate lithological variations and 
hydrothermal changes in multivariate 
geochemical data and limit the impact of 
outliers and values below the detection 
limit, plus hierarchical cluster analysis in 
mineral exploration work in New Zealand 
and Australia (Gasley, 2015); in studies to 
determine the most significant attributes 
in methane emissions in coal mines, reduc-
ing the computational time of predictive 
regression models and neural networks 
(Karacan et al., 2011).

Brusco (2014) cites other multivari-
ate methods combined with PCA in stud-
ies on multiple linear regression (Gatu & 
Kontoghiorghes, 2006; Gatu et al., 2007; 
Hofmann et al., 2007), discriminant anal-
ysis (Pacheco et al., 2006; Trendafilov & 
Jolliffe, 2007; Brusco & Steinley, 2011), 
cluster analysis (Krzanowski & Hand, 
2009), principal component analysis 
(Jolliffe, 2002; Mori et al., 2007; Brusco 
et al., 2009ª; Pacheco et al., 2013) and 
factor analysis (Kano & Harada, 2000; 
Hogarty et al., 2004). 

It is worth noting that PCA is a tech-
nique that does not indicate the number 
of components and the variables selected 
(Jiang, 2017). Jolliffe (1972) published a 
series of comparative analyses using an 
artificial database. In a revision of this 
work in 1973, the author used three real 
databases (of pitprops of Corsican pine, 
winged aphids and crimes committed 
in the U.K), but containing a relatively 
insignificant number of samples when 
compared to geoscience databases. In 
the mining studies mentioned above, the 
selection of variables was based on the 
expert's knowledge using a single previ-
ously defined criterion, usually the most 
expressive variable in a component ob-

tained by a cut-off value. This cut-off value 
is based on the percentage contribution of 
each componente (eigenvector) in order 
to obtain a share of the total variability. 
Another widely used criterion for retaining 
components is Kaiser's (Kaiser, 1958), in 
which case the value used for the cut-off 
is the eigenvector, i.e. components with 
λi (eigenvalue) > 1 represent a sufficient 
share of the total variation in the data. 
Matos et al.,2019 suggests that different 
evaluation criteria should always be used 
in conjunction with others in order to 
reaffirm the decision although, in most 
cases, this decision has been made using 
a single standard.

Ganguli (2022) cites that the current 
moment is a milestone for the mining 
industry, because after decades of focus-
ing on data collection, the industry has 
evolved to where the focus is now on data 
utilization. However, although this change 
is taking place, it is common to observe 
in practice that the information is not all 
consolidated in the resource model and is 
absorbed in a piecemeal and/or incomplete 
way. This happens for various reasons, 
such as the lack of isotopy in multivariate 
databases, the non-additivity and non-
linearity of some attributes, the lack of 
studies using more appropriate techniques 
for using this information, etc. For this 
reason, variable reduction is essential in 
geometallurgical studies in order to check 
which attributes actually have statistical 
significance for deposit modeling. The 
advantages of dimensionality reduction 
techniques applied to a dataset are numer-
ous, such as: (i) decreasing the number of 
dimensions and data storage space; (ii) 
Requiring less time for analysis (iii) Ir-
relevant, noisy and redundant data can be 
excluded; and (iv) Data quality may well 
be optimized (v) Helps an algorithm run 
efficiently and improves accuracy (vi) Al-
lows data visualization (vii) Simplifies clas-
sification and also increases performance 
(Juvonen et al., 2015, Liu et al., 2009);

Al Kandari & Jolliffe (2001) and Al 
Kandari & JolliffIe (2005), explain some 
variable selection criteria based on the 
principal component covariance, as well 
as cluster analysis algorithms. Grouping 
analysis algorithms are used for recog-
nizing patterns in multivariate data, thus 

helping to interpret the information and 
meaning of geostatistical domains. The 
combined action of PCA with grouping 
techniques is interesting because it is pos-
sible to achieve more consistent grouping 
by utilizing a reduced number of variables 
(Anzanello & Fogliatto, 2011). Cluster 
analysis can be applied to any data set to 
determine groupings of samples without 
a priori knowledge of their spatial or 
temporal relationships with each other. 
However, it becomes especially powerful 
when the grouped data set is multivariate 
and has already been subjected to PCA, 
which has reoriented the data cloud so that 
these first few dimensions summarize a 
significant proportion of all the variance. 
There are several approaches to classifying 
data clusters into supervised and unsuper-
vised areas.

The aim of this study was to ob-
tain geometallurgical domains with a 
smaller number of attributes in order to 
solve issues related to the non-isotopic 
nature of the database, reduce the 
time and computational demands of 
updating three-dimensional models 
and facilitate the interpretation of 
multivariate data. PCA was the ap-
proach chosen for this study because 
it is a simple and effective method that 
can be applied widely and works in 
most cases, as well as being present in 
most statistical software. Most of the 
articles and citations visited indicate 
that PCA is one of the most efficient 
methodologies for variable selection 
and dimensionality reduction. How-
ever, as already mentioned, PCA does 
not indicate the number of components 
and the decision on variable selection 
is made subjectively. For this reason, 
the purpose of this article is also to 
test different techniques for selecting 
attributes and to see if there are any 
differences that could have an impact 
on the clustering result.

The quality of the clusters was 
measured using the Elbow graph, the 
David Bowies index and visual valida-
tion. The result was satisfactory for the 
three criteria adopted, since the number 
of groups obtained was consistent with 
the geological individualization carried 
out on the mining fronts.

2. Materials and methods
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While λ is the Lagrangian, Ι is a 
matrix identification. This is the same 
formula for obtaining eigenvalues (λ) and 
eigenvectors (α)  for a covariance matrix Σ. 
The eigenvalues λ are ordered according to 
the covariance percentage. The first eigen-
values provide the maximum percentage 
of data covariance. 

Three approaches for the reduction 
of variables were tested, namely B2 and B4 
methods proposed by Jolliffe (1972), and 
a variable importance index (VII) which 
is based on the weight of the variables of 
linear combinations of PCA presented by 
Cervo (2015).

In the B2 method, PCA is applied to 

the normalized data of the correlation n 
x p matrix, transforming the original set 
of variables into a new set of variables not 
correlated among them and arranged in a 
decreasing order of variance where the first 
components (eigenvectors) contain the big-
gest explained variance (eigenvalues) from 
the original data. For the reduction of vari-
ables, the one which represents the biggest 
coefficient in the main component of small-
est variance (eigenvalue) is selected because 
this attribute is the least important to explain 
the total variance. This process is repeated 
for the next variable of the biggest coefficient 
for the second component of smaller vari-
ance and so on and so forth until the discard 

criterium recommended by Joliffe (1972) 
is achieved, i.e., the number of discarded 
variables must be equal to the number of 
components in which the explained variance 
(eigenvalue) is inferior to 0.7.

The B4 method follows the same 
logic as B2, but the procedures are now 
inverted. The selection process is carried out 
by retaining the variables with the biggest 
coefficients for the first components (eigen-
vectors) whose eigenvalue is bigger than 0.7. 

As for the importance of the vari-
able index (IIV), the following steps are 
followed: PCA is applied to the data. The 
importance index given by Equation (2) 
is calculated:

This index takes into consideration 
the αjp weight of the variable in each one 
of the J components (eigenvectors) together 
with the variance explained by each one 
of these J components (eigenvalues λj). 
The variables with the biggest indexes 
were retained for the first components 
(eigenvectors) in which the eigenvalue is 
bigger than 0.7.

Once the number of attributes in 
each of the methods tested hasd been 
defined, the data was grouped by varying 
the number of clusters from 2 to 8. The 
maximum value of k was chosen based on 
the geological knowledge of the deposit, 
where 8 main lithologies are recognized. 
Thus, the number of typological domains 
is expected to be equal to or less than the 8 
lithologies present. The K-means algorithm 
is one of the most widely used partitioning 
methods. When using a k-means algorithm, 
the user must specify the number k of divi-
sions or clusters. Initially, the algorithm 

randomly chooses k points that will be the 
centers of the initial clusters (centroids) 
based on the number of the groups they 
should be divided into. Each sample point 
is then assigned to the nearest centroid. The 
position of each centroid is then updated 
based on the configuration of the points in 
each group. This process is repeated until 
the centroids are no longer modified (Tan 
et al., 2006). A disadvantage of the method 
is that the clustering converges to a local 
minimum. Thus, to find the best cluster, it 
is necessary to run the algorithm several 
times with several initial centroids and then 
choose the best result.

The results of the clusters were then 
checked. There are various techniques 
that help assess the quality of clustering, 
such as the Silhouette coefficient, the 
Davies Bouldin index, the Elbow method, 
etc., the latter two of which are presented 
here.  The Elbow method tests the vari-
ance of the data in relation to the number 

of groups, i.e. the ideal k value is related 
to the smallest sum of squares within 
the cluster (wcss). Configurations with 
more compact groups have lower WCSS 
values because the distance between the 
elements within each group is smaller. 
This method is one of the most classic for 
determining the number of clusters in a 
data set, as well as being a visual method 
(Kodinariya & Makwana 2013).  The Da-
vies Bouldin index aims to find spherical 
clusters, with internal compactness and, 
at the same time, with good separability 
between the other clusters and is given by 
the ratio of intra-cluster and extra-cluster 
dispersion, i.e., it considers the proportion 
of dispersion within the cluster and the 
separation between the clusters. To define 
the index, it is first necessary to define the 
cluster's dispersion and similarity measure 
(Ganmawu & Wells, 2007 apud Oliveira 
et al., 2020). This similarity is calculated 
as shown below:

While S
i
 and S

j
 are the disper-

sion measures within clusters C
i
 and 

C
j
, and d

ij
 is the distance among the 

centroids of groups C
i
 and C

j
. The 

Davies-Bouldin (DB) index is given by 
the equation:

present. For this reason, it is essential to 
analyze the variables that are statistically 
important in order to preserve as many 
samples as possible in the following mul-
tivariate analyses. Principal component 
analysis (PCA) is a technique that allows 
the reduction of the number of variables 
to be analyzed, discarding the compo-
nents that have little variance, studying 

only those which retain the maximum 
variation possible present in the data set 
(Duarte, 1998). This is possible thanks 
to the transformation of a new set of 
variables, the principal components (PC), 
which are not correlated and are ordered 
in such a way that the first ones retain the 
biggest part of the variation present in all 
the other original variables. Thus, PCA 

problems involve performing a linear data 
transformation, maximizing transforma-
tion variance (Jolliffe, 2002). Consider α 
as a linear weight and  Σ the data covari-
ance matrix. This can be demonstrated for 
a data set Χ that has var(αΧ)=α' ∑α. Using 
the restriction that the transformed one is 
independent of α = 1, we can stablish PCA 
as Equation (1):

(∑α-λΙ) = 0

IIV
P = ∑j

j=1|αjp
|.λ

j

(1)

(2)

(3)R
IJ
 =             

S
i 
+ S

j 

d
ij 
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K: Number of clusters; R
i
: is the maximum value R

ij
.

3. Results and discussions

The eigenvalues and eigenvectors 
were obtained from the range of principal 
components, as shown in Table 1. Note 
that 12 of the 19 principal components 
had a variance of less than 0.7 (eigen-
value). This means that 12 attributes can 
be discarded, leaving seven variables for 
clustering, a 63% reduction in the num-
ber of variables. Table 2 shows the seven 
variables selected in each of the three 
methods tested, i.e. methods B2 and B4 us-
ing the criterion of excluded and retained 
attributes, and the IIV method used to 

calculate the importance index.
The variable Al2O3_C was selected 

in all the methods tested. Nb2O5, Fe2O3, 
SiO2 and BaO appear in two of the 
three methods tested (Table 2). Al2O3, 
DIST_MASS, SiO2_C and TiO2 are not 
selected in any of the techniques used 
and can be discarded. It is worth noting 
that some of these variables showed high 
linear correlation values and are therefore 
redundant. This means that although the 
three methods have different variables, 
some of them have similar characteristics 

and therefore correspond (Figure 1b).
For example, Fe2O3 (present in B2 

and B4) has a high MMAG correlation 
(present in IIV), so the high values of one 
induce the high values of the other and 
therefore do not need to coexist simulta-
neously within the same group. The same 
is true of Nb2O5 and Nb2O5_RF; P2O5, 
CaO, P2O5_C and CaO_C; MgO and 
MgO_C. On the other hand, the attri-
butes selected within the same method 
will be less correlated with each other 
(Figure 1a).

PC  Eigenvalue Explained variance proportion Accumulated explained variance

CP1 5.0429 0.265 0.265

CP2 2.7391 0.144 0.41

CP3 2.1341 0.112 0.522

CP4 1.8765 0.099 0.621

CP5 1.644 0.087 0.707

CP6 1.4885 0.078 0.786

CP7 0.7376 0.039 0.824

CP8 0.6467 0.034 0.858

CP9 0.5396 0.028 0.887

CP10 0.4665 0.025 0.911

CP11 0.4309 0.023 0.934

CP12 0.3438 0.018 0.952

CP13 0.2645 0.014 0.966

CP14 0.2281 0.012 0.978

CP15 0.1608 0.008 0.987

CP16 0.1106 0.006 0.992

CP17 0.0965 0.005 0.997

CP18 0.0371 0.002 0.999

CP19 0.012 0.001 1

Table 1 - PCA results.

Table 2 - Results from the selected variables.

Selected variables

B2 B4 Importance index

Nb2O5 CaO_C P2O5_C

SiO2 _ Fe2 O3 SiO2 _

Fe2O3 BaO CaO

BaO MgO P2O5

Fe2O3C LAMA Nb2O5_RF

MgO_C Al2O3_C MMAG

Al2O3_C Nb2O5 Al2O3 _C

(4)DB =             
1 ∑k=1Ri

k

k
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The Davies Bouldin index is il-
lustrated in Figure 3, which shows the 
number of clusters. The closer the index 
is to zero, the better the clustering result. 
Similar to the Elbow graph, in the Da-
vies index four clusters are indicated in 

IIV and B2. For B4, a number of clusters 
equal to 5 has the best index, although 
with a very small difference for k= 4. 
This fact reinforces the importance of 
using more than one technique in order 
to confirm the appropriate number of 

clusters, since the results obtained for 
B2 and B4 in the Davies index are not 
strongly conclusive. With regard to 
the adherence of the techniques again, 
B2 and B4 are more adherent and IIV 
shows less intra-group variability.

Al2O3, Fe2O3 and Nb2O5 and their 
correspondents (MMAG and Nb2O5_RF) 
plus SiO2 and BaO represent 71.4% of all 
the variables selected in at least two meth-
ods. These are the most relevant elements 
for the grouping and domain definition 
tests. Clustering was carried out using 
the k-means method, with the number 
of clusters (k) varying from 2 to 8. After 

finalizing the division, the ideal number 
of domains was chosen, and the quality 
of the grouping was checked with and 
without variable reduction. Deciding 
on the number of clusters is one of 
the most important considerations in 
unsupervised clustering algorithms for 
defining domains.

The Elbow graph shows that after 

4 domains, there is an inflection of the 
curves, i.e. there is no significant change 
in the variance within the groups. It can 
therefore be said that the choice of four 
domains would be appropriate for the case 
studied for all the methodologies tested. 
Selection methods B4 and B2 showed 
greater adherence, but IIV produced better 
results (Figure 2).

Figure 1 - a) Low correlation of the variables selected in the same method). b) Variables with a high correlation (redundant).

Figure 2 - Elbow graph to check the quality of the clustering, in a) selected variables and in b) comparing the total database.

Figure 3 - DB index graph for checking cluster quality.

(a) (b)

(a) (b)
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Figure 4 - Clustering result for k=4 clusters. In the upper image (all) 
using all the variables; in B2, B4 and IIV using the variables selected in each method.

Figure 5 - On the right the samples according to typology (geological description), on the left the result of grouping technique B4.

A visual inspection was carried 
out varying the elevation. Figure 4 
compares the results of the clusters 
generated with and without the reduc-
tion of variables in a section. There is 
a better regionalization of the clusters 
in the simulations that used variable 

reduction, and a greater dispersion 
of the samples in the grouping with 
all the data. The B4 method showed 
a better separation of the groups. 
The correlation between the domains 
generated by k-means using the B4 
method and the typological domains 

in the original data set can be seen 
in Figure 5. What can be seen is a 
coherence between the groupings 
and the predominant typologies, i.e., 
as expected, ores of the CBMG, NL 
and FO types tend to group together, 
as do FL, PI and CBM.

(a) (b)



7/8

Silvânia Alves Braga de Castro and André Carlos Silva

REM, Int. Eng. J., Ouro Preto, 77(2), e230071, apr. jun. | 2024

Acknowledgements

4. Conclusions

References 

The authors thank CEFET-MG, UFCAT for their support during the research.

The following variables Nb2O5, 
Fe2O3, BaO and SiO2 are important in 
explaining the variability of the data, 
being present in 2 of the 3 methods se-
lected. Al2O3C was selected in all three 
techniques tested. The metrics used to 
check the quality of the clusters show 
that the methodologies used are con-
sistent. The least satisfactory result in 
terms of the compactness of the groups 
occurred when the database with all the 
variables was used. This was expected, 
since irrelevant attributes can distort the 
quality of the clusters formed. Thus, we 
can eliminate these redundant features, 
as well as those that are difficult to mea-
sure, which reduces the time and cost 
of the experiments. It is important to 
note that the metrics obtained by these 

indices do not dispense with visual in-
spection and expert evaluation in order 
to check for coherence between the clus-
tered domains. The clusters obtained 
with dimensionality reduction through 
PCA were generally consistent with the 
typological domains and their charac-
teristics, although the distribution of the 
groups appears visually different in the 
three techniques, with B2 and B4 being 
more similar and IIV more discrepant. 
This indicates that it is necessary to be 
careful regarding the selection criteria, 
since these can impact the quality of the 
grouping, making it important to use 
more than one technique, which does 
not always happen.

In future projects, it is recom-
mended that other variable selection 

methodologies be tested, taking into 
account the non-linearity characteristics 
that some metallurgical variables may 
present, certifying the attributes that 
best define the typological domains. 
Mining companies can benefit from the 
results of this research when making 
decisions, especially with regard to the 
analysis of variables and their order of 
importance, since some of these are not 
so relevant for modeling and controlling 
ore quality.

Another important consideration 
is that only one of the five explanatory 
variables used in the cluster algorithm is 
part of the metallurgical database, reduc-
ing the number of non-additive variables 
and facilitating other analyses involving 
geostatistics and domain modeling.
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